A novel tactic of d-electron complementation is successfully developed for engineering vanadium nitride as an efficient electrocatalyst toward HER. (IMAGE)
Caption
VN, as an early-transition-metal nitride, owns inherent shortage of 3d electron, displaying week electron adsorption ability, thus restraining the continuous formation of Hads. As a late transition metal, Co atom takes the more 3d electron than V atom for granted, which could restrict the release of Hads due to the strong interplay between Co atom and Hads. In consequence, once electron intercoupling of VN and Co proceeds, the electron-rich d-orbitals of Co atoms and the electron-deficient d-orbitals of V atoms will simultaneously transfer electrons to the p-orbitals of bridging N atoms, hence leading to an improved delocalization of electrons among Co, V and N in VN/Co@GNC. When the electron density on Co and V atoms balance, the interactions between N atoms and Hads could be optimized in view of the Sabatier mechanism, which would be conducive to enhancing the adsorption and dissociation of water molecules for upgraded hydrogen production. Art by Chen’s group.
Credit
Beijing Zhongke Journal Publising Co. Ltd.
Usage Restrictions
Credit must be given to the creator.
License
CC BY