Fig.1 The new microfluidic device’s working principle (IMAGE)
Caption
Schematic illustration of the working principle of the new microfluidic device, which directly visualizes antibody levels from COVID-19 vaccines. Both the magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) in the device can bind to antibodies against SARS-CoV-2, but they are based on different mechanisms: the MMPs are coated in the virus’s spike protein to ensure specific binding to the antibody against the spike protein, while the PMPs are modified with a secondary antibody against human immunoglobulin G. After loaded into a microfluidic chip, the particle solution first flows through a magnetic separator that removes magnetic microparticles and the connected polystyrene microparticles. At the same time, free polystyrene microparticles continue to flow until they are trapped at a particle dam. Thus, the antibody level is inversely proportional to the accumulative length of polystyrene microparticles, which can be readable and quantifiable by the naked eye without relying on a specific reader.
Credit
Dr Chen Ting-Hsuan’s Research Team / City University of Hong Kong
Usage Restrictions
Image must be used with appropriate caption and credit
License
Original content