Photon-efficient volumetric imaging with light-sheet scanning fluorescence microscopy (IMAGE)
Caption
(a) In ASLM, a focused Gaussian beam is first laterally scanned, which generates a light-sheet perpendicular to the direction of beam propagation. Afterward, the focus of the Gaussian beams is axially swept in synchronization with the rolling shutter of the camera. (b) In LSLM, a Gaussian beam is first axially scanned, which forms a “light needle” along the direction of beam propagation. Then, the beam is laterally swept in synchronization with the camera. Meanwhile, pixel reassignment is applied to realize ISM-enhanced laterally swept light-sheet microscopy (iLSLM). (c,d) Cross-sectional view of the simulated light-sheet with a cropped Y-FoV of 100 μm in the Y-Z plane after the first scanning for the ASLM and LSLM. The highlighted region shows an example of the rolling shutter with a width of ~ 86.0 μm for ASLM and ~ 3.6 μm for LSLM. Scale bar: 10 μm. (e) Z-profiles of the ASLM and iLSLM when the photon efficiency reaches 80% in experimental imaging of fluorescent beads. (f) Relationship between photon efficiency and axial FWHM of ASLM and iLSLM.
Credit
Qiao, Li, Zhong, et al., doi 10.1117/1.APN.2.1.016001.
Usage Restrictions
NONE
License
Original content