figure 1 (IMAGE)
Caption
Conceptual diagram showing muonic atoms and quantum electrodynamic (QED) effects. In a muonic atom, the negative muon (-) is bound to the nucleus and orbits around it. According to quantum electrodynamics, the bound negative muon continues its orbital motion while repeatedly emitting and absorbing virtual photons (self-energy: SE ). In addition, there is an electrostatic attraction between the neon nucleus (Ne10+) and the negative muon, and the photons propagating through this interaction continuously repeat the creation and annihilation of virtual electron-positron (e±) pairs (vacuum polarization: VP ). In this study, we precisely measured the energy of muonic characteristic X-rays emitted when the negative muon deexcites to a lower state.
Credit
Okumura et al.
Usage Restrictions
Please credit
License
Original content