News Release

Progress in wastewater treatment via organic supramolecular photocatalysts under sunlight

Peer-Reviewed Publication

Dalian Institute of Chemical Physics, Chinese Academy Sciences

Figure Abstract

image: 

RESEARCHERS have addressed the drawbacks of low sunlight utilization, insufficient mineralization, and limited treatment flux in photocatalytic pollutant removal through strategies such as self-assembly of small molecules, modulation of the built-in electric field via molecular dipoles and crystallinity, and coupling with Fenton catalysts. Compared with the typical photocatalysts, the supramolecular and polymeric organic photocatalysts developed by THEIR group have shown excellent performance in the degradation of organic pollutants.

view more 

Credit: Chinese Journal of Catalysis

Refractory organic pollutants, including phenols, perfluorinated compounds, and antibiotics, are abundant in various industrial wastewater streams such as chemical, pharmaceutical, coking, and dyeing sectors, as well as municipal and domestic sources. These pollutants pose significant threats to ecological well-being and human health. The imperative to achieve complete removal of organic contaminants from water and facilitate water recycling is paramount for enhancing environmental quality and ensuring sustainable economic and social progress. Addressing the efficient removal of recalcitrant organic pollutants in water is not only a focal point in environmental chemical pollution control research but also a pivotal technical challenge constraining industrial wastewater reuse. Advanced oxidation processes (AOPs), especially heterogeneous AOPs, which yield strongly reactive oxygen species including ·OH, ·O2-, and ·SO4- to oxidize organic pollutants under ambient conditions, are appealing wastewater treatment technologies for decentralized systems. AOPs often need excessive energy input (UV light or electricity) to activate soluble oxidants (H2O2, O3, persulfates), thus more cost-effective AOPs are urgently required. By virtue of ease of separation and utilization of sunlight, heterogeneous photocatalysis is becoming a sustainable and promising AOP strategy for addressing environmental issues.

Widely used inorganic photocatalysts exhibit robust stability and efficient mineralization activities. However, their broad bandgap, which restricts the sunlight absorption range, and low adsorption capacity for organic pollutants collectively impair the overall efficiency of pollutant photodegradation. In contrast, organic semiconductors represented by g-C3N4 offer the advantage of extended-spectrum utilization and excellent adsorption ability due to their high surface area and substantial π-π stacking. Nevertheless, their utilization is hampered by the generation of high binding-energy Frenkel excitons upon light excitation, impeding the separation of long-lived photogenerated electrons and holes efficiency. The limited carrier separation efficiency significantly curtails the photodegradation activity of organic photocatalysts. The shallow valence band positions of these photocatalysts also limit their mineralization efficiency. Furthermore, compared with established wastewater treatment methods like Fenton or Fenton-like processes, photocatalytic technologies often exhibit low treatment capacity, markedly falling short of industrialization demands.

Based on the relevant scientific issues within photocatalytic wastewater treatment, recently, a research team led by Prof. Yongfa Zhu from Tsinghua University, China, summarized their progress in pollutant degradation using organic photocatalysts to propel the practical implementation of photocatalytic water treatment and serve as a reference for researchers in this field. Firstly, they developed new supramolecular and polymeric organic photocatalytic systems to elevate light utilization efficiency. By modulating the effect of monomer structure on energy band position, they expanded the absorption scope to the near-infrared region, realizing mineralization under solar light. Secondly, they unveiled the role of dipoles and crystalline order in modulating the built-in electric field, enabling efficient charge migration from bulk to surface, thus significantly enhancing pollutant degradation and mineralization rates. Finally, they established a novel approach for photo-self-Fenton high-flux mineralization of organic pollutants to improve the treatment capacity of photodegradation and overcome the limitations of the Fenton method. The new system combines in situ H2O2 generation through photocatalytic redox reaction with in situ Fenton reaction synergistically, which achieves high-flux mineralization under visible light without additional oxidants, thereby elevating pollutant mineralization from 30% to over 90%. The results were published in Chinese Journal of Catalysis (https://doi.org/10.1016/S1872-2067(23)64530-9).

###

This work was supported by the National Natural Science Foundation of China (22136002), National Key Research and Development Project of China (2020YFA0710304) and Special Fund Project of Jiangsu Province for Scientific and Technological Innovation in Carbon Peaking and Carbon Neutrality (BK20220023).

About the Journal

Chinese Journal of Catalysis is co-sponsored by Dalian Institute of Chemical Physics, Chinese Academy of Sciences and Chinese Chemical Society, and it is currently published by Elsevier group. This monthly journal publishes in English timely contributions of original and rigorously reviewed manuscripts covering all areas of catalysis. The journal publishes Reviews, Accounts, Communications, Articles, Highlights, Perspectives, and Viewpoints of highly scientific values that help understanding and defining of new concepts in both fundamental issues and practical applications of catalysis. Chinese Journal of Catalysis ranks among the top one journals in Applied Chemistry with a current SCI impact factor of 16.5. The Editors-in-Chief are Profs. Can Li and Tao Zhang.

At Elsevier http://www.journals.elsevier.com/chinese-journal-of-catalysis

Manuscript submission https://mc03.manuscriptcentral.com/cjcatal


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.