News Release

Disruption of mitochondrial unfolded protein response results in shortening of telomeres in mouse oocytes and somatic cells

Peer-Reviewed Publication

Impact Journals LLC

Figure 6

image: 

Figure 6. Representative confocal images of TRF1 expression and TRF/H2AX co-localization in cumulus oophorus isolated from 6-month-old wild-type and Clpp−/− mice.

view more 

Credit: 2024 Cozzolino et al.

“[...] our findings provide a preliminary understanding of how mitochondrial and telomeric aging mechanisms may interact to accelerate reproductive and somatic aging.”

BUFFALO, NY- February 21, 2024 – A new research paper was published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science) Volume 16, Issue 3, entitled, “Disruption of mitochondrial unfolded protein response results in telomere shortening in mouse oocytes and somatic cells.”

Caseinolytic peptidase P (CLPP) plays a central role in mitochondrial unfolded protein response (mtUPR) by promoting the breakdown of misfolded proteins and setting in motion a cascade of reactions to re-establish protein homeostasis. Global germline deletion of Clpp in mice results in female infertility and accelerated follicular depletion. Telomeres are tandem repeats of 5’-TTAGGG-3’ sequences found at the ends of the chromosomes. Telomeres are essential for maintaining chromosome stability during somatic cell division and their shortening is associated with cellular senescence and aging. 

In this new study, researchers Mauro Cozzolino, Yagmur Ergun, Emma Ristori, Akanksha Garg, Gizem Imamoglu, and Emre Seli from Yale School of Medicine, IVIRMA Global Research Alliance and Imperial College London asked whether the infertility and ovarian aging phenotype caused by global germline deletion of Clpp is associated with somatic aging, and tested telomere length in tissues of young and aging mice. 

“In this study, we asked whether the infertility and ovarian aging phenotype caused by global germline deletion of Clpp is associated with somatic aging, and tested telomere length in young and aging mice gametes, gonads and somatic tissues.”

The team found that impaired mtUPR caused by the lack of CLPP is associated with accelerated telomere shortening in both oocytes and somatic cells of aging mice. In addition, expression of several genes that maintain telomere integrity was decreased, and double-strand DNA breaks were increased in telomeric regions. Their results highlight how impaired mtUPR can affect telomere integrity and demonstrate a link between loss of mitochondrial protein hemostasis, infertility, and somatic aging.

“Our findings demonstrate how loss of mitochondrial protein homeostasis may accelerate telomere shortening in oocytes and somatic cells, and provide a link between reproductive and somatic aging.”
 

Read the full paper: DOI: https://doi.org/10.18632/aging.205543 

Corresponding Author: Emre Seli

Corresponding Email: emre.seli@yale.edu 

Keywords: telomere length, aging, Clpp, mitochondrial dysfunction, unfolded protein response

Click here to sign up for free Altmetric alerts about this article.

 

About Aging:

Launched in 2009, Aging publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.

Please visit our website at www.Aging-US.com​​ and connect with us:

 

Click here to subscribe to Aging publication updates.

For media inquiries, please contact media@impactjournals.com.

 

Aging (Aging-US) Journal Office

6666 E. Quaker Str., Suite 1B

Orchard Park, NY 14127

Phone: 1-800-922-0957, option 1

###


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.