News Release

Octopus-inspired 3D micro-LEDs pave the way for selective pancreatic cancer therapy​

Peer-Reviewed Publication

The Korea Advanced Institute of Science and Technology (KAIST)

Octopus-Inspired 3D Micro-LEDs Pave the Way for Selective Pancreatic Cancer Therapy​

image: 

<(From Left) Professor Keon Jae Lee, Professor Tae-Hyuk Kwon, Ph.D candidate Min Seo Kim, Dr. Jae Hee Lee, Dr. Chae Gyu Lee>

view more 

Credit: KAIST

-KAIST and UNIST Researchers Develop Shape-Morphing Device to Overcome Pancreatic Tumor Microenvironment Barriers

 

Conventional pancreatic cancer treatments face a critical hurdle due to the dense tumor microenvironment (TME). This biological barrier surrounds the tumor, severely limiting the infiltration of chemotherapy agents and immune cells. While photodynamic therapy (PDT) offers a promising alternative, existing external light sources, such as lasers, fail to penetrate deep tissues effectively and pose risks of thermal damage and inflammation to healthy organs

 

To address these challenges, Professor Keon Jae Lee’s team at KAIST, in collaboration with Professor Tae-Hyuk Kwon at UNIST, developed an implantable, shape-morphing 3D micro-LED device capable of effectively delivering light to deep tissues. The key technology lies in the device’s flexible, octopus-like architecture, which allows it to wrap around the entire pancreatic tumor. This mechanical compliance ensures uniform light delivery to the tumor despite the tumor’s physiological expansion or contraction, enabling continuous, low intensity photostimulation that precisely targets cancer cells while preserving normal tissue.

 

In in-vivo experiments involving mouse models, the device demonstrated remarkable therapeutic efficacy. Within just three days, tumor fibrous tissue was reduced by 64%, and the pancreatic tissue successfully reverted to normal tissue, overcoming the limitations of conventional PDT.

 

Prof. Keon Jae Lee said, "This research presents a new therapeutic paradigm by directly disrupting the tumor microenvironment, the primary obstacle in pancreatic cancer treatment." He added, "We aim to expand this technology into a smart platform integrated with artificial intelligence (AI) for real-time tumor monitoring and personalized treatment. We are currently seeking partners to advance clinical trials and commercialization for human application."

Professor Tae-Hyuk Kwon commented, "While phototherapy is effective for selective cancer treatment, conventional technologies have been limited by the challenges of delivering light to deep tissues and developing suitable photosensitizers." He added, "Building on this breakthrough, we aim to expand effective immune-based therapeutic strategies for targeting intractable cancers."

The result, titled "Deeply Implantable, Shape-Morphing, 3D MicroLEDs for Pancreatic Cancer Therapy," was featured as the cover article in Advanced Materials (Volume 37) on December 10, 2025.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.