News Release

Spurwechsel im Zellskelett

Transportproteine können zwischen Mikrotubuli- und Aktin-Netzwerk wechseln

Peer-Reviewed Publication

Technical University of Munich (TUM)

Angela Oberhofer and Dr. Zeynep Ökten

image: First author Angela Oberhofer and Dr. Zeynep Ökten in the microscope room at the Department of Physics of the Technical University of Munich. view more 

Credit: Fabian Vogl / TUM

Viele Amphibien und Fische können ihre Farbe wechseln, um sich besser an ihre Umgebung anzupassen. Münchener Wissenschaftlerinnen und Wissenschaftler haben nun die dafür notwendigen molekularen Mechanismen im Zellskelett untersucht und potenzielle Evolutionswege aufgedeckt.

Alle Zellen höherer Organismen sind von einem Zellskelett durchzogen, das im Wesentlichen aus Aktin-Filamenten und kleinen Proteinröhren, den Mikrotubuli, besteht. Lange Zeit betrachtete die Wissenschaft die Aktin- beziehungsweise Mikrotubuli-Netzwerke als unabhängige Systeme.

Heute weiß man, dass die beiden Netzwerk-Typen miteinander kommunizieren und damit lebenswichtige zelluläre Prozesse wie die Zellteilung oder die Zellmigration überhaupt erst möglich machen. Wie diese Zusammenarbeit auf molekularer Ebene funktioniert, war allerdings noch unbekannt.

Dr. Zeynep Ökten vom Lehrstuhl für Molekulare Biophysik der Technischen Universität München (TUM) und Erwin Frey, Professor für Statistische und Biologische Physik der Ludwig-Maximilians-Universität München, haben mit ihren Teams nun am Beispiel des Farbwechsels bei Tieren erstmals einen Mechanismus identifiziert, der die Kommunikation zwischen beiden Netzwerksystemen erklärt und potenzielle Evolutionswege aufgedeckt.

Transportwege in der Zelle

Viele funktionelle Bestandteile einer Zelle, etwa die Organellen, müssen in der Zelle zum richtigen Zeitpunkt an den richtigen Ort gebracht werden. Dazu werden sie von molekularen Motoren auf den Mikrotubuli und Aktin-Filamenten transportiert.

Motoren, die lange als spezifisch für eines der beiden Netzwerksysteme galten, können aber in Wirklichkeit auch auf den anderen Filamenttyp umgelenkt werden. In Mäusen etwa wurde ein Adapter-Protein gefunden, das diese Umlenkung möglich macht.

Myosin transportiert seine Fracht über das Aktin-Netzwerk. Das Adapter-Protein interagiert aber auch mit den Mikrotubuli und kann den Transport auf dieses Netzwerk umleiten. Welches Netzwerk präferiert wird, steuert eine chemische Modifikation an einer bestimmten Bindungsstelle des Adapter-Proteins.

Adapter-Protein mit Umschalt-Modus

Ein dem Säugetier-Adapter entsprechendes Protein weisen auch Fische und Amphibien auf. Die evolutiv älteren Fische und Amphibien nutzen es, um Pigment-Organellen innerhalb spezieller Zellen umzuverteilen und können so ihre Hautfarbe an Umweltfaktoren anpassen.

Daher setzte das Forschungsteam für experimentelle Untersuchungen in Öktens Labor Zebrafische und Krallenfrösche ein, um den Ursprung und die molekularen Mechanismen der Interaktion zwischen dem Mikrotubuli- und dem Aktin-Netzwerk zu untersuchen.

Evolution eines molekularen Schalters

Dabei fanden die Wissenschaftler, dass sowohl das Maus- als auch das Krallenfrosch-Adapter-Protein eine bestimmte Domäne besitzt, die das Umschalten zwischen Aktin- und Mikrotubuli-Transport ermöglicht.

Zebrafische, die evolutiv ältesten der untersuchten Tiere, haben diese Domäne noch nicht. „Hier unterliegen die Motorproteine, die die Pigmente bewegen, anderen Regulationsmechanismen und es gibt noch keine Interaktion zwischen den verschiedenen Zellskelett-Netzwerken“, sagt Ökten.

„Bei den Krallenfröschen dagegen ist das Umschalten zwischen den Netzwerken zwingend erforderlich, damit das Tier sich umfärben kann – und diese Fähigkeit zum Umschalten hat sich auch im weiteren Verlauf der Evolution vom Amphibium zum höheren Wirbeltier erhalten“, erläutert Ökten weiter.

Theoretisches Modell erklärt Pigmentumverteilung

Die experimentellen Ergebnisse zeigten, dass die Umweltsignale, die im Organismus von Krallenfröschen eine Umverteilung der Pigment-Organellen bewirken, mit einer Änderung der Wahrscheinlichkeit zusammenhängen, mit der einzelne Motorproteine von den Aktin- zu den Mikrotubuli-Filamenten wechseln.

„Wir haben ein theoretisches Modell entwickelt, das die Umschaltwahrscheinlichkeit eines einzelnen Motorproteins mit der zellweiten Umverteilung der Pigment-Organellen in Beziehung setzt“, sagt Frey. Die Computersimulationen ergaben, dass tatsächlich die Variation der Umschaltwahrscheinlichkeit als einziger Parameter ausreicht, um eine Umverteilung der Organellen in den simulierten Zellen zu provozieren.

„Auffallend ist, dass unsere Simulationen die im lebenden Organismus beobachtete Organellen-Umverteilung bemerkenswert genau widerspiegeln“, sagt Frey. „Damit unterstreicht der theoretische Ansatz die funktionelle Bedeutung der experimentellen Ergebnisse und zeigt, dass die Interaktion zwischen Aktin- und Mikrotubuli-Netzwerk, die sich bei niederen Wirbeltieren entwickelt hat, eine besonders hohe regulatorische Effizienz besitzt.“

###

Die Forschungsarbeit wurde durch das European Research Council (ERC) und die Deutsche Forschungsgemeinschaft (DFG) gefördert.

Publikation:

Molecular Underpinnings of Cytoskeletal Crosstalk Angela Oberhofer, Emanuel Reithmann, Peter Spieler, Willi L. Stepp, Dennis Zimmermann, Bettina Schmid, Erwin Frey and Zeynep Ökten, PNAS 10.02.2020 – DOI: 10.1073/pnas.1917964117


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.