News Release

An Old Yellow Enzyme helps algae combat photooxidative stress

Biology

Peer-Reviewed Publication

Ruhr-University Bochum

Anja Hemschemeier

image: Biologist Anja Hemschemeier researches green algae. view more 

Credit: © RUB, Marquard

OYEs in microalgae use energy from photosynthesis

“Our research group is among the first to investigate OYEs in algae,” says Dr Stefanie Böhmer, lead author of the study. “Initially, we set out to determine whether these biocatalysts are also suitable for industrial processes. We were particularly interested in whether microalgae can use the energy of photosynthesis to drive the respective chemical reactions. This could help establish more environmentally friendly productions.” The researchers could indeed demonstrate this: a chemical molecule added to living algae cells was only converted at high rates in the light. “This result also indicated that the so-called en-reductases of the algae that are responsible for this conversion are linked to photosynthesis,” says Böhmer. Therefore, the researchers from the Photobiotechnology working group investigated how an algal strain in which an OYE biocatalyst is defective adapts to strong light.

Excess light energy must be dissipated

In cooperation with researchers from the University of Leipzig, the Bochum research team could indeed show that this algal strain is hardly able to dissipate excess light energy. “Photosynthetic organisms such as algae and plants must always maintain a balance between absorbed light energy and its conversion into chemical energy,” explains Anja Hemschemeier, who led the study. “Otherwise, oxidative cell damage will occur if the light is too strong. Therefore, these organisms have sophisticated protective mechanisms in place to dissipate excess light energy, for example as heat.”

In the microalgal strain lacking an OYE, the researchers detected hardly any of these protective mechanisms at all, and the strain accordingly exhibited oxidative damage. “We suspect that a certain molecule, which is normally converted by this biocatalyst in the algal cells, is essential for the photosynthetic balance,” says Hemschemeier.

The research team now plans to get to the bottom of this. “Photosynthetic organisms provide the basis for our life. It’s very important to understand how they adapt to stress, and we believe we’ve found another piece of the jigsaw here,” concludes Hemschemeier.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.