Ferrocene conjugated glutathione consumption for enhanced ferroptosis therapy and chemotherapy
Peer-Reviewed Publication
Welcome to theTsinghua University Press (TUP) News Page.
Below are the latest research news from TUP.
Updates every hour. Last Updated: 16-Nov-2025 22:11 ET (17-Nov-2025 03:11 GMT/UTC)
Research has shown that ferroptosis can overcome chemotherapy resistance induced by apoptosis, making the combination of chemotherapy and ferroptosis a very promising strategy for cancer treatment. However, the high levels of glutathione in the tumor environment and insufficient intracellular iron content limit the anticancer effects mediated by ferroptosis. Recently, a study published in Nano Research utilized the tumor environment to achieve a "multi-machine integrated" combined strategy, enhancing the therapeutic effects of chemotherapy and ferroptosis. The study was published in Nano Research with the DOI of 10.26599/NR.2025.94907298.
The Ag nanoparticles were deposited on the hBN surface, and the synergistic effect of hexagonal boron nitride nanosheets and silver nanoparticles was utilized to achieve superlubricity with very low coefficient of friction and wear rate.
Highly sensitive and selective detection of volatile organic compounds (VOCs) is of great significance, and designing a suitable microstructure and constructing heterostructures are two main effective strategies for gas-sensing materials to achieve this goal. Pt nanoparticles-modified 2D CoFe2O4/Co3O4 nanosheets directly derived from 2D bimetallic Fe-Co MOFs were synthesized by magnetic stirring and subsequent hydrothermal process. The successful synthesis of the 2D Pt/CoFe2O4/Co3O4 and the formation of multi-heterojunctions were demonstrated by experiments.
A novel PbTiO3-based perovskite system, (1-x)PbTiO3-xBiYbO3, has been synthesized using a distinctive high-pressure and high-temperature technique. The system exhibits an unusual enhanced tetragonalities compared to pristine PbTiO3 (c/a = 1.064). Consequently, NTE over an extended temperature range has been realized in 0.95PbTiO3-0.05BiYbO3 ( = -2.18 ´ 10-5/K, 300 - 820 K) and 0.90PbTiO3-0.10BiYbO3 ( = -1.85 ´ 10-5/K, 300 - 850 K), respectively, when compared to that of pristine PbTiO3 ( = -1.99 ´ 10-5/K, 300 - 763 K). Our experimental and theoretical studies indicate that the improved tetragonalities and expanded NTE temperature range result from stronger Pb/Bi-O and Ti/Yb-O bond strengths, and an asymmetrically distributed charge density. The present study presents a new instance of NTE across a broad temperature range, highlighting its potential as an effective thermal expansion compensator.
Cellular ceramic structures (CCSs) are promising candidates for structural components due to their low density and superior strength. However, the brittleness and poor energy absorption of CCSs severely limit their applications. Inspired by the dual-phase interpenetrating architectures in natural materials, bioinspired dual-phase composites were developed to achieve superior strength and energy absorption simultaneously. Importantly, structural components are subjected to not only quasi-static loading but also dynamic impact in application. Although mechanical properties of dual-phase composites under quasi-static loading have been investigated, their performance under dynamic loading has rarely been revealed. Moreover, how structural parameters affect mechanical properties of CCSs-based dual-phase interpenetrating composites remains unclear.
The genus Trichoderma plays a vital role in agriculture by promoting plant growth, enhancing nutrient uptake, and protecting crops from pathogens through biocontrol mechanisms. This can be largely attributed to its production of diverse secondary metabolites (SMs), including epidithiodiketopiperazines (ETPs). Our previous study has reported the complex biosynthesis of α, β'-disulfide bridged ETPs, in which TdaH and TdaG are highly conserved in catalyzing C6'-O-methylation and C4, C5-epoxidation, respectively. Here we proved the functional diversification of ETP methylation and oxidation by TdaH and TdaG towards eleven pathogenic fungi, including Fusarium, Aspergillus, and Botrytis species. Elimination of C6'-O-methylation and C4, C5-epoxidation reduced the antagonistic effects of Trichoderma hypoxylon against various pathogenic fungi. However, each deletion mutant showed varying antagonistic effects against different pathogenic fungi. Our results highlight the importance of ETP structural diversity in T. hypoxylon's ecological adaptation and biocontrol potential, offering insights into developing enhanced antifungal agents against plant pathogens.
Researchers from Beijing Institute of Technology introduce a novel two-stage method for converting monochromatic near-infrared (NIR) images into high-quality RGB images. In the first stage, luminance information is recovered by converting NIR images into grayscale images. The second stage then restores chrominance information, transforming grayscale images into vibrant RGB images. This grayscale-assisted approach significantly improves image quality for applications such as assisted driving and security surveillance.