Researchers record ultrafast chorus dance of electrons on super-small particle
Peer-Reviewed Publication
Updates every hour. Last Updated: 25-Apr-2025 16:08 ET (25-Apr-2025 20:08 GMT/UTC)
It may be the smallest, shortest chorus dance ever recorded.
As reported in Science Advances, an international team of researchers observed how electrons, excited by ultrafast light pulses, danced in unison around a particle less than a nanometer in diameter. Researchers measured this dance with unprecedented precision, achieving the first measurement of its kind at the sub-nanometer scale.
The synchronized dance of electrons, known as plasmonic resonance, can confine light for brief periods of time. That light-trapping ability has been applied in a wide range of areas, from turning light into chemical energy to improving light-sensitive gadgets and even converting sunlight into electricity. While they’ve been studied extensively in systems from several centimeters across to those just 10 nanometers wide, this is the first time researchers were able to break the field’s “nanometer barrier.”
Researchers have been working for decades to understand the details of where the proton gets its intrinsic angular momentum, otherwise referred to as its spin. Recently, there have been indications that the spin contribution of the gluons could either be positive or negative. Now, a new approach that avoids assumptions and re-analyzes observational data with lattice quantum chromodynamics points strongly toward a positive gluon spin contribution, ∆g, to the proton spin.
SLAC researchers studying laser-driven proton acceleration introduced a self-replenishing water sheet target to address the inefficiency of replacing targets after each laser pulse. The new target had an unanticipated side effect, resulting in a naturally focused, more tightly aligned proton beam.