ORNL partnership with EPB tests new method for protecting quantum networks
Peer-Reviewed Publication
Updates every hour. Last Updated: 25-Apr-2025 06:08 ET (25-Apr-2025 10:08 GMT/UTC)
Researchers at the Department of Energy’s Oak Ridge National Laboratory joined forces with EPB of Chattanooga and the University of Tennessee at Chattanooga to demonstrate the first transmission of an entangled quantum signal using multiple wavelength channels and automatic polarization stabilization over a commercial network with no downtime.
The successful trial of this innovation marks another step toward the eventual creation of a quantum internet that could prove to be more capable and secure than existing networks.
Scientists have performed computer simulations confirming a technique that prevents the production of unhelpful electromagnetic waves, boosting the heat put into fusion plasma.
A team of scientists with two Department of Energy Bioenergy Research Centers — the Center for Bioenergy Innovation, or CBI, at Oak Ridge National Laboratory and the Center for Advanced Bioenergy and Bioproducts Innovation, or CABBI, at the University of Illinois Urbana-Champaign — identified a gene in a poplar tree that enhances photosynthesis and can boost tree height by about 30% in the field and by as much as 200% in the greenhouse.
Scientists have a new way to use data from high-energy particle smashups to peer inside protons. Their approach uses quantum information science to map out how particle tracks streaming from electron-proton collisions are influenced by quantum entanglement inside the proton. The results reveal that quarks and gluons, the fundamental building blocks that make up a proton’s structure, are subject to so-called quantum entanglement.
A chemical reaction can convert two polluting greenhouse gases into valuable building blocks for cleaner fuels and feedstocks, but the high temperature required for the reaction also deactivates the catalyst. A team led by the Department of Energy’s Oak Ridge National Laboratory has found a way to thwart deactivation. The strategy may apply broadly to other catalysts.