Unveiling the systemic nature of pancreatic cancer cachexia: multi-organ interactions underpin a deadly syndrome
Peer-Reviewed Publication
Welcome to theTsinghua University Press (TUP) News Page.
Below are the latest research news from TUP.
Updates every hour. Last Updated: 3-Sep-2025 08:11 ET (3-Sep-2025 12:11 GMT/UTC)
Pancreatic cancer cachexia is a devastating syndrome marked by unintentional weight loss, skeletal muscle wasting, and metabolic dysfunction that severely impairs patient outcomes. Affecting over 60% of pancreatic cancer patients, cachexia contributes to reduced quality of life, therapy intolerance, and high mortality. In a new comprehensive review published in hLife, researchers from the Peking Union Medical College Hospital and Harvard T.H. Chan School of Public Health highlight how this condition arises not from malnutrition alone, but through complex systemic crosstalk among multiple organs. The review provides a detailed account of the biological drivers of cachexia—including inflammatory cytokines, TGF-β family ligands, catabolic mediators, and tumor-derived extracellular vesicles—and their roles in orchestrating multi-organ deterioration. It also explores cutting-edge animal models and proposes potential therapeutic targets that could disrupt the vicious cycle of body wasting. This work lays a foundation for future clinical strategies to diagnose, monitor, and treat cachexia as a systemic disease.
Glass-ceramic scintillators are attracting considerable attention as highly promising materials. However, increasing crystallinity inevitably enhances Rayleigh scattering, compromising their transparency. This creates a fundamental contradiction between achieving high crystallinity and high transparency. Resolving this contradiction is therefore critical, needing ongoing efforts in developing material design strategies.
In a paper published in Mycology, a Chinese team of scientists revealed a sophisticated chemical dialogue between a host fungus and symbiotic bacterium within Shiraia fruiting body. These findings provide unprecedented insights into microbial warfare strategies in specialized ecological niches while developing novel co-culture induction methodologies for the simultaneous biotechnological production of fungal hypocrellin A and bacterial carotenoids.
A collaborative team led by Researcher Chen Ruichong from Chengdu University, in partnership with Professor Qi Jianqi from Sichuan University and Researcher Wang Haomin from Taihang Laboratory, has achieved a groundbreaking advance in ceramic processing. By synergistically modulating nanoscale effects with the material’s intrinsic layered structure, the researchers demonstrated for the first time that water can serve as an effective transient liquid phase (TLP) for cold sintering of water-insoluble Li₂TiO₃ ceramics.
Under optimized conditions of 300°C and 700 MPa, the team successfully densified the ceramics to a relative density of 94.33%, while precisely maintaining an ultrafine grain size of 26.42 nm. This innovation provides a novel strategy for the low-temperature, environmentally friendly fabrication of water-insoluble ceramics, significantly broadening the scope of cold sintering technology. The findings hold promising applications in high-end fields such as energy storage and nuclear industries.
The modulation of the surface structure of platinum-based single-atom alloys is crucial for improving the catalytic performance in propane dehydrogenation. The optimization of the surface structure of PtCu clusters was attained through regenerative treatment, which significantly improved the propylene yield and catalytic stability, thereby offering a viable strategy for the design of alloy catalysts applicable to various high-temperature dehydrogenation reactions.
NiMo-NiMoOx with crystalline/amorphous heterointerface was fabricated by a facile electrodeposition method. Theoretical calculations and experimental results confirm that the introduction of Mo atoms can not only lower the energy barrier of water dissociation and optimize the capacity for hydrogen adsorption/desorption, but also modulate the ratio between crystalline and amorphous phases, increasing the heterostructure interfaces and enriching active sites. Thus, the NiMo-NiMoOx electrocatalyst exhibits remarkable HER catalytic properties and durability. It requires a low overpotential of 30 mV at the current density of 10 mA cm-2 in 1.0 M KOH, as well as a long-term stability with slight degradation after operating for over 80 h. Moreover, it also exhibits excellent activity and stability with negligible declination in the simulated alkaline seawater, making it highly promising for seawater electrolysis applications.
Heterostructured magnetic composites with exchange coupling effects are considered to be promising electromagnetic wave absorbers. Soft magnetic ZnFe2O4 and hard magnetic Fe3C are generated and tightly anchored on two-dimensional carbon nanosheets, which generate large number of heterogeneous interfaces. This work provides advanced nanostructure integrating two-dimensional morphology and soft/hard magnetic heterostructure with effective exchange coupling, which can simultaneously achieve the electromagnetic wave stealth and high corrosion resistance.
The application of CAR-T cell therapy against solid tumors is often hindered by the dense and rigid tumor extracellular matrix (ECM). While combining CAR-T with hyaluronidase (HAase) to reduce ECM is apparent, the efficacy is limited because of low accumulation and penetration efficiency of HAase inside the tumor tissue. Herein, the stimuli-responsive HAase-loaded nanogels (H-NGs) which are conjugated on the surface of CAR-T cells were designed for synergistically improving HAase accumulation, ECM degradation and CAR-T cell efficacy. The conjugation of H-NGs on the T cell surface was achieved through metabolic oligosaccharide engineering (MOE) in a semi-quantitatively controlled manner. Intravenous injection of H-NGs armed CAR-T cells resulted in more ECM degradation than co-injection of CAR-T cells and free H-NGs, leading to an 83.2% tumor inhibition rate and relieves tumor suppressive microenvironment in the Raji solid tumor model. Proteomic analysis of the harvested tumor tissues indicated that the combining of H-NGs and CAR-T cell collaboratively reduces cell adhesion and enhanced leukocyte transendothelial migration. Overall, this work simultaneously boosts the efficacy of hyaluronidase and CAR-T cells in combating solid tumor, which has broad application potential in cancer combination therapy.
A groundbreaking study led by researchers at Huazhong University of Science and Technology (HUST) has developed a high-performance near-infrared (NIR) computational spectrometer using finely-tuned lead sulfide (PbS) quantum dots (QDs). This innovation, published in Nano Research, achieves a spectral resolution of 1.5 nm, making it a powerful tool for applications ranging from qualitative material identification to quantitative alcohol content measurement in liquor. The study highlights the critical role of QD monodispersity and precise synthesis in enhancing spectrometer performance, paving the way for portable, low-cost NIR spectrometers in industrial and consumer applications.
In a groundbreaking study published in Nano Research, researchers from Beijing Normal University (Zhuhai) and the University of Wollongong have developed a novel catalytic system that significantly enhances the efficiency of hydrogen oxidation reactions (HOR) in alkaline media. This advancement could pave the way for more efficient and durable anion exchange membrane fuel cells (AEMFCs), a critical component in the transition to clean energy technologies.
Hydrogen fuel cells are a promising alternative to fossil fuels, offering a clean and renewable energy source. However, the efficiency of these cells is often limited by the sluggish kinetics of the hydrogen oxidation reaction, particularly in alkaline environments. Platinum (Pt) is the most effective catalyst for HOR, but its performance is hindered by high hydrogen adsorption binding energy (HBE) and insufficient hydroxyl adsorption energy (OHBE). This study addresses these challenges by introducing a new catalytic system that balances HBE and OHBE, thereby improving the overall efficiency of the reaction.