From the atmosphere to the abyss: Iron's role in Earth's climate history
Peer-Reviewed Publication
Updates every hour. Last Updated: 5-Nov-2025 05:11 ET (5-Nov-2025 10:11 GMT/UTC)
A new study published by researchers at the University of Hawai‘i at Mānoa sheds light on the critical role of iron in Earth’s climate history, revealing how its sources in the South Pacific Ocean have shifted over the past 93 million years. This groundbreaking research, based on the analysis of deep-sea sediment cores, provides crucial insights into the interplay between iron, marine life, and atmospheric carbon dioxide levels.
Scientists discovered deep-sea microbes using bio-electrical conductors to collaborate and consume methane, a potent greenhouse gas, before it escapes into the atmosphere. This is the first direct evidence of how these natural marine microbial partners [DJ1] transmit electricity between cells. Understanding how these electric microbial partnerships work could inspire new approaches to reduce greenhouse gas emissions.
A research team led by a Ph.D. student at the University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science has developed a new artificial intelligence (AI) tool that can automatically identify and track tropical easterly waves (TEWs)—clusters of clouds and wind that often develop into hurricanes—and separate them from two major tropical wind patterns: the Intertropical Convergence Zone (ITCZ) and the monsoon trough (MT).
Foraminifera (forams) are shelled microorganisms that are abundant in the Earth’s seabed. Analyzing different species of forams provides important information about climate change, the state of the marine environment, and suitable areas for carbon capture and storage.
New research finds that Marine Protected Areas can boost the recovery of globally important kelp forests following marine heatwaves. The findings are published in the British Ecological Society’s Journal of Applied Ecology.