From metabolism to immunity: a hidden switch in breast cancer uncovered
Peer-Reviewed Publication
Updates every hour. Last Updated: 15-Dec-2025 15:11 ET (15-Dec-2025 20:11 GMT/UTC)
In a surprising twist on cellular metabolism, scientists have uncovered a noncanonical role of the metabolic enzymePHGDH in shaping immune responses within breast cancer microenvironment.
Bladder cancer often becomes resistant to standard treatments due to its ability to evade apoptosis, the primary form of cell death targeted by conventional therapies. In a recent study, researchers from China developed a nanomedicine that triggers ferroptosis—a different cell death pathway—without needing external activation. Their proposed system not only killed resistant cancer cells but also enhanced the immune system's anti-tumor response, offering a promising dual-action therapy for bladder cancers.
POSTECH and Linyi University develop ‘SLY,’ a Probe That Glows Yellow Only in Tumor Cells.
Recent research highlights the transformative impact of precision medicine on breast cancer management. By tailoring treatments to the unique genetic and molecular profiles of individual tumors, precision medicine has significantly improved outcomes for patients across all major breast cancer subtypes. Key innovations, including advanced diagnostics, targeted therapies, and immunotherapy, are reshaping the landscape of breast cancer care.
People who have survived cancer as children are at higher risk of developing severe COVID-19, even decades after their diagnosis. This is shown by a new study from Karolinska Institutet published in the journal The Lancet Regional Health – Europe.
A recent study published in Genes & Diseases reveals a novel role of XPR1 in promoting ovarian cancer growth by regulating autophagy and MHC-I expression. The research, conducted by scientists from Chongqing Medical University, identifies XPR1 as a critical factor influencing the aggressiveness of ovarian cancer through its interaction with LAMP1 and the PI3K/Akt/mTOR signaling pathway. These findings shed light on new therapeutic targets for ovarian cancer, a malignancy known for its poor prognosis and resistance to immune checkpoint inhibitors.