Precision targeting of the centromedian nucleus in drug-resistant epilepsy highlighted in brain network disorders
Peer-Reviewed Publication
Updates every hour. Last Updated: 21-Sep-2025 18:11 ET (21-Sep-2025 22:11 GMT/UTC)
Brain cancer remains one of the deadliest cancers, with limited treatment options and poor outcomes. In this review, researchers explore how nuclear receptors (NRs) influence brain tumor growth, invasion, and treatment resistance. The article details specific roles of different NRs and discusses how targeting them with drugs could improve therapy. These findings offer a promising direction for developing more precise, effective treatments against this highly aggressive and treatment-resistant cancer type.
A cross-institutional team in China reports that oxytocin-driven empathy reduces “free-riding” and keeps cooperation stable in rats. Using a fully automated reciprocity paradigm that recapitulates delayed return in nature—only one partner receives water per trial and roles alternate—the study shows elevated oxytocin signals in the orbitofrontal cortex and experience-dependent increases in empathy, while oxytocin-deficient rats free-ride more and fail to gain empathy. The work reveals an intrinsic motivational mechanism for sustaining cooperation.
Researchers from The Hong Kong University of Science and Technology and the Southern University of Science and Technology have developed a novel deep learning neural network, Electrode Net. By introducing signed distance fields and three-dimensional convolutional neural networks, this method can significantly accelerate electrode design while maintaining high accuracy. It is widely applicable to fuel cells, water electrolyzers, flow batteries, etc.
A team from Sun Yat-sen University Sun Yat-sen Memorial Hospital has identified a novel mechanism underlying platinum resistance in triple-negative breast cancer (TNBC): the circular RNA circSCAP encodes a 129-amino-acid protein (SCAP-129aa) that activates the PI3K/AKT pathway by stabilizing PIK3R2. Silencing circSCAP or combining platinum therapy with the PIK3R2 inhibitor significantly improved treatment efficacy in preclinical models, highlighting circSCAP and SCAP-129aa as potential biomarkers and therapeutic targets.
The first ab initio calculation of the rarest electromagnetic transition in atomic nuclei, the hexacontatetrapole E6 transition in 53Fe, has been performed. Using the valence-space in-medium similarity renormalization group (VS-IMSRG) methods with realistic nuclear force and bare nucleon charges, the study has successfully explained both the excitation energies and electromagnetic decay rates of the unique T1/2 = 2.54-minutes Jπ = 19/2- isomer at 3.0 MeV. This study provides unprecedented insights into nuclear structure under extreme conditions and validates ab initio approaches for describing the high-multipole electromagnetic transitions in atomic nuclei. The research demonstrates that the formation of 19/2- isomer arises from the pure 0f7/2 orbital configuration.
If AI’s intrinsic risks are real, governmental regulation and ethical frameworks are unlikely to contain them. Drawing on social theory, it highlights myths about the state’s capacity, global enforcement challenges, rapid technological decentralization, and the ambiguity of moral norms. The author presents a skeptical view that “meaning well” does not ensure effective outcomes, cautioning against overreliance on governments and ethics to mitigate advanced AI risks.
The therapeutic efficacy of cuproptosis, ferroptosis, and apoptosis is hindered by inadequate intracellular copper and iron levels, hypoxia, and elevated glutathione (GSH) expression in tumor cells. Thermoelectric technology is an emerging frontier in medical therapy that aims to achieve efficient thermal and electrical transport characteristics within a narrow thermal range for biological systems. Here, we systematically constructed biodegradable Cu2MnS3-x-PEG/glucose oxidase (MCPG) with sulfur vacancies (SV) using photothermoelectric catalysis (PTEC), photothermal-enhanced enzyme catalysis, and starvation therapy. This triggers GSH consumption and disrupts intracellular redox homeostasis, leading to immunogenic cell death. Under 1064 nm laser irradiation, MCPG enriched with SV, owing to doping, generates a local temperature gradient that activates PTEC and produces toxic reactive oxygen species (ROS). Hydroxyl radicals and oxygen are generated through peroxide and catalase-like processes. Increased oxygen levels alleviate tumor hypoxia, whereas hydrogen peroxide production from glycometabolism provides sufficient ROS for a cascade catalytic reaction, establishing a self-reinforcing positive mechanism. Density functional theory calculations demonstrated that vacancy defects effectively enhanced enzyme catalytic activity. Multimodal imaging-guided synergistic therapy not only damages tumor cells, but also elicits an antitumor immune response to inhibit tumor metastasis. This study offers novel insights into the cuproptosis/ferroptosis/apoptosis pathways of Cu-based PTEC nanozymes.
In August 2017, the National Natural Science Foundation of China (NSFC) launched the Major Research Plan “Dynamic Modifications and Chemical Interventions of Biomacromolecules” (implementation period 2017–2025). Through interdisciplinary research that integrates chemistry, life sciences, medicine, mathematics, materials science, and information science, its aim is to develop specific labeling methods and detection techniques for dynamic chemical modifications of biomacromolecules, elucidate the recognition mechanisms and biological functions of dynamic modifications in the regulation of cellular traits, and discover potential drug targets and corresponding lead compounds related to dynamic biomacromolecular modifications. Since its establishment, this Major Research Plan has achieved significant progress and original results in many aspects such as the dynamic properties of biomacromolecular chemical modifications, regulatory mechanisms, and chemical interventions. Recently, members of the expert group, management group, and secretariat of the program collaborated to systematically review representative research achievements obtained since the program’s implementation, and jointly published a review article in CCS Chemistry. This review provides important references for promoting development in related frontier fields, as well as for the future trend of integration between chemistry, life sciences, and medicine.