Vibration suppression and control for detumbling satellite: A novel approach for on-orbit servicing
Peer-Reviewed Publication
Updates every hour. Last Updated: 23-Oct-2025 14:11 ET (23-Oct-2025 18:11 GMT/UTC)
A servicing spacecraft equipped with a compliant flexible rod has emerged as an innovative solution for detumbling defunct satellites, but the contact-induced vibrations of the flexible rod and severe disturbance pose significant challenges to operational accuracy and safety. Despite the extensive research on vibration suppression and detumbling control for tumbling satellites, the combined application of nonlinear energy sink with active varying stiffness (NES-AVS) for flexible rod vibration suppression in servicing spacecraft has yet to be comprehensively studied, and addressing this research gap is crucial as existing methods struggle to achieve both vibration reduction and guaranteed control performance under contact-induced disturbance.
Nowadays, the prevailing of 5G communication era has greatly stimulated a tremendous progress in microwave devices and has also made a demand of more stringent dielectric characteristics. Therefore, it is important to develop ceramics with excellent microwave dielectric properties.Vanadate dielectrics are attracting attention due to their relatively low sintering temperatures. But their large and negative τf values still limit practical applications, just as most of low εr ceramics. Adding those materials with positive τf values into low εr ceramics is an effective method to adjust τf to the near-zero value. However, this method will inevitably pose the decline in the Q×f value. Consequently, one key challenge facing low εr ceramics is how to adjust τf to the near-zero value without deteriorating Q×f.
The global antibiotic resistance crisis necessitates alternatives like bacteriophage therapy. However, bacterial phage resistance remains challenging. The authors developed a phage cocktail targeting carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) that exploits the dual-layered collateral sensitivity to suppress resistance evolution. The first layer leveraged overlapping capsular polysaccharide (CPS) and lipopolysaccharide (LPS) coverage: CPS-binding phage resistance increased susceptibility to LPS-binding phages. The second layer exploited an O serotype switch (O1→O2): resistance to O1-binding phages increased susceptibility to O2-binding phages. This dual-mechanism cocktail effectively constrained phage resistance development and mitigated CR-hvKp infection in mice. This research highlights collateral sensitivity's importance in countering phage resistance and provides a sophisticated phage cocktail design strategy to overcome bacterial resistance.
Artificial intelligence (AI) is emerging as a powerful catalyst for transforming enterprise productivity.
In an era of growing demand for real-time precision navigation, researchers have unveiled a powerful leap forward in satellite-based positioning.
Fluoropolymers promise all-solid-state lithium metal batteries (ASLMBs) but suffer from two critical challenges. The first is the trade-off between ionic conductivity (σ) and lithium anode reactions, closely related to high-content residual solvents. The second, usually consciously overlooked, is the fluoropolymer’s inherent instability against alkaline lithium anodes. Here, we propose indium-based metal–organic frameworks (In-MOFs) as a multifunctional promoter to simultaneously address these two challenges, using poly(vinylidene fluoride–hexafluoropropylene) (PVH) as the typical fluoropolymer. In-MOF plays a trio: (1) adsorbing and converting free residual solvents into bonded states to prevent their side reactions with lithium anodes while retaining their advantages on Li+ transport; (2) forming inorganic-rich solid electrolyte interphase layers to prevent PVH from reacting with lithium anodes and promote uniform lithium deposition without dendrite growth; (3) reducing PVH crystallinity and promoting Li-salt dissociation. Therefore, the resulting PVH/In-MOF (PVH-IM) showcases excellent electrochemical stability against lithium anodes, delivering a 5550 h cycling at 0.2 mA cm−2 with a remarkable cumulative lithium deposition capacity of 1110 mAh cm−2. It also exhibits an ultrahigh σ of 1.23 × 10−3 S cm−1 at 25 °C. Moreover, all-solid-state LiFePO4|PVH-IM|Li full cells show outstanding rate capability and cyclability (80.0% capacity retention after 280 cycles at 0.5C), demonstrating high potential for practical ASLMBs.
Inflammation is a natural immune response, but when uncontrolled, it can worsen many diseases. Recent studies show that metabolism plays a surprising role in regulating this response. A new editorial in the Journal of Intensive Medicine highlights findings on the glyoxalase system, a metabolic pathway that helps immune cells tone down inflammation. This insight opens new possibilities for treating inflammatory diseases through metabolic targets, offering a promising direction beyond traditional immunosuppressants.