Feeding smarter: mannanase improves broiler growth even with less soy and energy
Peer-Reviewed Publication
Updates every hour. Last Updated: 16-Dec-2025 02:11 ET (16-Dec-2025 07:11 GMT/UTC)
A new study initiated and co-coordinated at the Zhejiang University, University of Copenhagen, and Kunming Institute of Zoology at Chinese Academy of Sciences published in the top journal Cell, resolves ant genomics to an unprecedented level of explanatory resolution.
Simultaneously detecting multiple signals with high precision has long challenged microelectromechanical systems (MEMS) sensors due to unavoidable interference.
Reliable 5G positioning is vital for smart cities, driverless cars, and next-gen mobile services. Yet in dense urban landscapes, high-rise buildings often distort signals, leading to major positioning errors.
New research from Shenzhen University and Jinan University explores the use of carbon fiber composites in civil engineering, focusing on recycling methods and structural applications. The study, published in Engineering, highlights an integrated approach to extending the lifespan of reinforced concrete structures through impressed current cathodic protection and structural strengthening. Additionally, it presents an electrochemical recycling technique that efficiently recovers carbon fibers, maintaining their strength and functionality. These advancements offer practical solutions for sustainable construction and resource management.
Hypersonic vehicles face critical aerodynamic heating during flight, demanding advanced thermal protection systems (TPS). A team of Chinese researchers has developed a novel carbon-bonded carbon fiber (CBCF) composite modified with SiBCN ceramics (CBCF/SiBCN), enabling efficient in-plane heat dissipation while maintaining thermal insulation. The composite exhibits exceptional anisotropic thermal properties and mechanical strength, addressing long-standing limitations in traditional CBCF materials for aerospace TPS.
The combustion chamber temperature of the new generation aircraft engines can reach an ultra-high temperature of 1800 °C, making temperature monitoring of key components crucial. Thin-film thermocouples (TFTCs) are highly sensitive and have rapid response time; however, their upper temperature limit remains below 1800 °C. This study proposes an ultra-high temperature film thermocouple, enhanced by yttria-stabilized zirconia (YSZ) for positive film, indium oxide (In2O3) for negative film, aluminium oxide (Al2O3) for protect film. The thermocouple is designed based on temperature measurement principles, First-principles, and simulations, and it is manufactured via screen-printing. The results indicate that the maximum working temperature is 1850 ℃. In experiments with different doping ratios at 1800 ℃, the thermocouple achieves a maximum temperature electromotive force (TEMF) of 258.5 mV and a maximum Seebeck coefficient of 180.9 μV/°C, with an In2O3:YSZ92(ZrO2:Y2O3 = 92:8 wt%) ratio of 9:1 wt%. Using the lumped heat capacity method, the response time is measured at 2.8 ms, demonstrating good dynamic response characteristics. The film thermocouple is successfully utilized to measure the gas temperature of 1090 °C at the outlet of air turbine rocket engine, confirming its high-temperature operational capability. To improve the repeatability of the TFTCs without affecting their thermoelectric outputs, a CNN-LSTM-attention neural network is implemented to mitigate repeatability errors, achieving a high repeatability of 99.53%. Additionally, the compensated temperature data are compared with those obtained from a standard B-type thermocouple, showing a full-scale error of ±0.73% FS. This study provides a feasible solution for ultra-high temperature measurements.
Natural biomass-derived carbon material is one promising alternative to traditional graphene-based catalyst for oxygen electrocatalysis. However, their electrocatalytic performance were constrained by the limited modulating strategy. Herein, using N-doped commercial coconut shell-derived activated carbon (AC) as catalyst model, the controllably enhanced sp2-C domains, through an flash Joule heating process, effectively improve the edge defect density and overall graphitization degree of AC catalyst, which tunes the electronic structure of N configurations and accelerates electron transfer, leading to excellent oxygen reduction reaction performance (half-wave potential of 0.884 VRHE, equivalent to commercial 20% Pt/C, with a higher kinetic current density of 5.88 mA cm-2) and oxygen evolution reaction activity (overpotential of 295 mV at 10 mA cm2). In a Zn-air battery, the catalyst shows outstanding cycle stability (over 1200 h) and a peak power density of 121 mW cm-2, surpassing commercial Pt/C and RuO2 catalysts. Density functional theory simulation reveals that the enhanced catalytic activity arises from the axial regulation of local sp2-C domains. This work establishes a robust strategy for sp2-C domain modulation, offering broad applicability in natural biomass-based carbon catalysts for electrocatalysis.