Novel technologies to advance next-generation semiconductor packaging
Reports and Proceedings
This month, we’re focusing on artificial intelligence (AI), a topic that continues to capture attention everywhere. Here, you’ll find the latest research news, insights, and discoveries shaping how AI is being developed and used across the world.
Updates every hour. Last Updated: 19-Nov-2025 05:11 ET (19-Nov-2025 10:11 GMT/UTC)
Photothermoelectric (PTE) photodetectors with self-powered and uncooled advantages have attracted much interest due to the wide application prospects in the military and civilian fields. However, traditional PTE photodetectors lack of mechanical flexibility and cannot operate independently without the test instrument. Herein, we present a flexible PTE photodetector capable of dual-mode output, combining electrical and optical signal generation for enhanced functionality. Using solution processing, high-quality MXene thin films are assembled on asymmetric electrodes as the photosensitive layer. The geometrically asymmetric electrode design significantly enhances the responsivity, achieving 0.33 mA W-1 under infrared illumination, twice that of the symmetrical configuration. This improvement stems from optimized photothermal conversion and an expanded temperature gradient. The PTE device maintains stable performance after 300 bending cycles, demonstrating excellent flexibility. A new energy conversion pathway has been established by coupling the photothermal conversion of MXene with thermochromic composite materials, leading to a real-time visualization of invisible infrared radiation. Leveraging this functionality, we demonstrate the first human–machine collaborative infrared imaging system, wherein the dual-mode photodetector arrays synchronously generate human-readable pattern and machine-readable pattern. Our study not only provides a new solution for functional integration of flexible photodetectors, but also sets a new benchmark for human–machine collaborative optoelectronics.
This article provides an overview of recent advancements in tissue engineering and regenerative medicine, highlighting various innovations in biomaterials, therapeutic strategies, and diagnostic technologies. It covers topics such as the development of minimally invasive implantable materials for bone regeneration, the construction of photo-responsive implant materials, the application of artificial ligaments in ACL reconstruction, and the exploration of active components in traditional Chinese medicine for treating osteoporosis.
An international group of astronomers led by the University of Cambridge have shown that we will be able to learn about the masses of the earliest stars by studying a specific radio signal – created by hydrogen atoms filling the gaps between star-forming regions – originating just a hundred million years after the Big Bang.
· Cases of bowel cancer are on the rise, and the chemotherapy drugs used to treat most patients haven’t changed in almost 50 years. These drugs eventually stop working for many patients.
· Until now, scientists haven’t understood how resistance to chemotherapy develops.
· New machine learning technology can determine how resistance has developed, which will accelerate the design of new drugs to keep patients well for longer