New study shows how ancient climates may inform monsoon prediction
Peer-Reviewed Publication
Updates every hour. Last Updated: 15-May-2025 00:09 ET (15-May-2025 04:09 GMT/UTC)
A recent study published in Nature has explored how the South Asian Summer Monsoon (SASM) responds to warming under six climate scenarios, spanning from the past to the future. Led by researchers from the Institute of Atmospheric Physics at the Chinese Academy of Sciences, the study develops a unified framework based on thermodynamic (moisture-driven) and dynamic (wind-driven) processes that govern changes in the SASM, suggesting that insights from past warm climates can inform our understanding of the future SASM.
Researchers report on ionospheric sporadic E layer (Es) activity during the Mother’s Day geomagnetic storm. The team found that the Es layers were significantly enhanced over Southeast Asia, Australia and South Pacific, as well as the eastern Pacific regions during the recovery phase of the geomagnetic storm. They also observed a propagation characteristic in the Es enhancement region wherein the clouds were first detected in high latitudes and detected successively in lower latitudes as time progressed.
Kyoto, Japan -- Stifling heat and sticky air often make summertime in the city uncomfortable. Due to the heat island effect, urban areas are significantly warmer than nearby rural areas, even at night. This, combined with more frequent extreme weather events caused by climate change, often render the city an unpleasant environment in the summer.
Urbanization and climate change modify the thermal environment of urban areas, with an expectation that urban disasters from extremely hot weather and heavy rainfall will only become more severe. Mitigating potential damage involves reducing the intensity of the heat island effect and adapting to climate change.
Motivated by this problem, a team of researchers at Kyoto University set out to investigate how the reduction in urban heat release could help mitigate and control the rapid development of thunderstorms and local rainfall.