New material behavior to improve speed and efficiency of technology
Peer-Reviewed Publication
Updates every hour. Last Updated: 4-Jul-2025 14:11 ET (4-Jul-2025 18:11 GMT/UTC)
In a new study, researchers at the University of Minnesota Twin Cities discovered surprising magnetic behavior in one of the thinnest metallic oxide materials ever made. This could pave the way for the next generation of faster and smarter spintronic and quantum computing devices.
Disaster waste from earthquakes and tsunamis can severely delay recovery in coastal communities, but existing predictive models often ignore how damaged transportation networks can hinder waste disposal efforts. In a recent study, researchers developed a probabilistic framework that jointly models waste disposal and road network systems under seismic and tsunami hazards. By accounting for their interdependencies and restoration dynamics, the framework offers more realistic estimates of cleanup times and highlights key strategies to improve resilience.
Singapore – Scientists from the A*STAR Genome Institute of Singapore (A*STAR GIS) have developed a new artificial intelligence (AI)-based method called "Fragle" that makes tracking cancer easier and faster using blood tests. Requiring only a small blood sample, this method analyses the size of DNA fragments in the blood to reveal distinct patterns that differentiate cancer DNA from healthy DNA, helping doctors track cancer treatment response more accurately and frequently. The research was published in Nature Biomedical Engineering in March 2025.
A new study led by researchers at the Universities of Oxford, Cambridge and Manchester has achieved a major advance in quantum materials, developing a method to precisely engineer single quantum defects in diamond—an essential step toward scalable quantum technologies. The results have been published in the journal Nature Communications.