In Africa, heat waves are hotter and longer than 40 years ago, UIC researchers say
Peer-Reviewed Publication
Updates every hour. Last Updated: 26-Aug-2025 13:11 ET (26-Aug-2025 17:11 GMT/UTC)
New research from the University of the Witwatersrand in Johannesburg, South Africa (Wits University), has shown that heavy metals such as lead, arsenic, cadmium and mercury accumulate in the scales of Black Mambas (Dendroaspis polylepis).
The study, conducted on snakes captured in Durban in KwaZulu-Natal and published in Environmental Pollution, was the first of its kind to examine heavy metal accumulation in an African snake species. The results mean that researchers can use scale clippings from these snakes to accurately measure spatial patterns of environmental pollution levels, without harming the snakes.
A research team from Tsinghua University has developed a compact, zero dead-zone heterodyne grating interferometer for simultaneous three-degree-of-freedom (3-DOF) atomic-level displacement measurement. The system achieves sub-nanometer resolution, outstanding linearity, and exceptional stability over large ranges, with significantly reduced crosstalk errors. This breakthrough paves the way for next-generation lithography, atomic-scale manufacturing, and ultra-precision aerospace metrology.
Researchers at The University of Osaka have discovered a new type of chiral symmetry breaking (CSB) in an organic crystalline compound. This phenomenon, involving a solid-state structural transition from an achiral to a chiral crystal, represents a significant advance in our understanding of chirality and offers a simplified model to study the origin of homochirality. This transformation also activates circularly polarized luminescence, enabling new optical materials with tunable light properties.
A team of researchers has unveiled a powerful imaging technique that captures a full-dimensional portrait of elusive trap states—defects that hinder the performance of perovskite solar cells. By combining scanning photocurrent measurement system (SPMS) with complementary tools like thermal admittance spectroscopy (TAS) and drive-level capacitance profiling (DLCP), the team produced detailed spatial and energy maps of these hidden imperfections. Leveraging these insights, they introduced a passivation strategy using sulfa guanidine molecules that dramatically improved device performance. The result: a record-breaking solar cell achieving 25.74% efficiency. This breakthrough not only unlocks a deeper understanding of device physics but also provides a practical pathway to next-generation solar technologies.
Supernovae appear to our eyes—and to astronomical instruments—as brilliant flashes that flare up in the sky without warning, in places where nothing was visible just moments before. The flash is caused by the colossal explosion of a star. Because supernovae are sudden and unpredictable, they have long been difficult to study, but today, thanks to extensive, continuous, high-cadence sky surveys, astronomers can discover new ones almost daily.
It is crucial, however, to develop protocols and methods that detect them promptly; only in that way can we understand the events and celestial bodies that triggered them. In a pilot study, Lluís Galbany of the Institute of Space Sciences (ICE-CSIC) in Barcelona and his colleagues present a methodology that can obtain the earliest possible spectra of supernovae—ideally within 48 hours, or even 24 hours, of the “first light.” The results have just been published in the Journal of Cosmology and Astroparticle Physics (JCAP).