Study shows 90% metal pollution drop in Adirondack waters five decades after the clean air act
Peer-Reviewed Publication
Updates every hour. Last Updated: 24-Apr-2025 21:08 ET (25-Apr-2025 01:08 GMT/UTC)
A new low-energy chemical recycling method using boron and gallium can convert common silicone waste into useful chlorosilanes with high efficiency and yield. The method offers a promising new chemical pathway toward circularity in silicone materials, addressing both resource sustainability and emissions reductions in the industry. Prized for their durability, heat and chemical resistance, and low toxicity, silicone polymers are found in countless everyday products, ranging from medical devices to car parts. Each year, millions of tons of silicone are produced globally. Producing silicones is highly energy-intensive, with over 70% of their carbon footprint stemming from the extraction and subsequent chemical processing of component materials. Thus, improving silicone recycling is critical – not only to conserve valuable raw materials like quartz but also to significantly reduce energy use and environmental waste. However, while recycling of carbon-based polymers has advanced, recycling silicone polymers remains challenging due to their complex chemical makeup and robust material properties. Here, Nam Duc Vu and colleagues present a versatile chemical recycling strategy to break down a wide range of silicone-based materials, including those commonly used in consumer and industrial products. Vu et al.’s approach uses a gallium catalyst and boron trichloride reagent to depolymerize silicone, at a mild 40° Celsius, into quantitative amounts (~97% yields) of high-purty chlorinated silane monomers, which are key building blocks in silicone manufacturing. According to the authors, the method is scalable and closes the loop on silicone materials by enabling re-synthesis of fresh silicones from waste. In a related Perspective, Koushik Ghosh discusses the study in greater detail.
For reporters interested in research integrity issues, Perspective author Koushik Ghosh notes, “recent efforts in my field have made strides toward addressing science integrity-related issues, particularly through initiatives aimed at improving transparency, reproducibility, and ethical research practices. However, one area I believe requires greater emphasis is prioritizing quality over quantity in scientific output. The current landscape often incentivizes the production of numerous publications, sometimes at the expense of originality and rigor. I would like to see a stronger focus on fostering truly innovative research, with an honest acknowledgment of the value of "failure experiments."
A study conducted by CNRS1 researchers describes a new method of recycling silicone waste (caulk, sealants, gels, adhesives, cosmetics, etc.). It has the potential to significantly reduce the sector’s environmental impacts. This is the first universal recycling process that brings any type of used silicone material back to an earlier state in its life cycle where each molecule has only one silicon atom. And there is no need for the raw materials currently used to design new silicones. Moreover, since it is chemical and not mechanical recycling, the reuse of the material can be carried out infinitely. The associated study is to be published in Science on 24 April 2025.
Researchers from the U.S. Department of Energy’s Fermi National Accelerator Laboratory (Fermilab), Caltech, NASA's Jet Propulsion Laboratory (which is managed by Caltech), and other collaborating institutions have developed a novel high-energy particle detection instrumentation approach that leverages the power of quantum sensors—devices capable of precisely detecting single particles.
Fewer than one in 10 senior authors in a prestigious physics journal are women, according to a new study.
Of 15 countries, Canada has the worst record. The 33 Canadian-led papers in Nature Physics in the last 10 years had zero senior authors who were women, according to a new study published by the journal. Author Dr. Alannah Hallas, associate professor in the UBC Stewart Blusson Quantum Matter Institute and the department of physics and astrophysics, discusses the results and how they highlight the need for further support for young scientists in the field.
We know exercise is good for our body, but what about our brains? A new study from the University of Missouri suggests that exercise plays a crucial role in keeping our minds sharp, even when one of the brain’s key energy sources isn’t available.
The study, led by Mizzou researchers Taylor Kelty and R. Scott Rector, offers fresh insight into brain health and suggests that exercise could play a bigger role in preventing cognitive decline than previously thought.