Common feature between forest fires and neural networks reveals the universal framework underneath
Peer-Reviewed Publication
Updates every hour. Last Updated: 18-Jul-2025 20:11 ET (19-Jul-2025 00:11 GMT/UTC)
Researchers from the University of Tokyo in collaboration with Aisin Corporation have demonstrated that universal scaling laws, which describe how the properties of a system change with size and scale, apply to deep neural networks that exhibit absorbing phase transition behavior, a phenomenon typically observed in physical systems. The discovery not only provides a framework describing deep neural networks but also helps predict their trainability or generalizability. The findings were published in the journal Physical Review Research.
Chemists have developed a novel way to generate a variety of highly useful chemical building blocks by harnessing metal carbenes, suggests new research.
Modern methods of radiotherapy would fight cancer more effectively and safely if treatments could be planned taking into account the radiation quality of the therapeutic proton beams. An achievement by physicists from the Institute of Nuclear Physics of the Polish Academy of Sciences in Cracow brings us closer to this goal.
While lasers integrated directly with silicon chips offer several advantages in photonics, their efficiency may be impacted by material mismatch and coupling loss. Researchers have now achieved the direct fabrication of quantum dot laser on silicon with broad and scalable photonics application. The integrated lasers were thermally stable and capable of efficient lasing at O-band frequency. This novel integration technique shows strong potential for broader adoption and commercialization.
This breakthrough research from Shanghai Jiao Tong University overcomes critical barriers to silicon micro-ring resonator (MRR) commercialization. By heterogeneously integrating low-loss phase-change material Sb₂Se₃, the team created non-volatile, "smart-programmable" transceivers enabling precise, full-spectral-range wavelength tuning via electrical pulses. Crucially, the technique preserves high performance, achieving 100 Gbps per MRR (400 Gbps total for 4 cascaded rings) and introducing an innovative thermal compensation scheme for stability. This work provides a robust solution for high-density, low-power optical interconnects, accelerating MRR technology from the lab towards transformative applications in data centers and high-speed networks, while showcasing the power of multidisciplinary innovation.