Green ammonia revolution: New electrolyte strategy boosts sustainable fertilizer production
Peer-Reviewed Publication
Updates every hour. Last Updated: 21-Dec-2025 18:11 ET (21-Dec-2025 23:11 GMT/UTC)
A joint international research team has, for the first time, unveiled the crucial link between the structure of the solid electrolyte interphase (SEI) and the efficiency of lithium-mediated nitrogen reduction to ammonia, a promising eco-friendly approach to fertilizer production. Using in situ spectroscopy, the team directly observed the previously poorly understood SEI formation process, revealing that the ethanol-to-water ratio in the electrolyte significantly impacts ammonia conversion efficiency. This discovery opens a new avenue for sustainable fertilizer production by reducing reliance on fossil fuels and lowering greenhouse gas emissions.
Researchers at The University of Osaka have developed a new program, “postw90-spin,” that enables high-precision calculations of a novel performance indicator for the spin Hall effect, a phenomenon crucial for developing energy-efficient and high-speed next-generation magnetic memory devices. This breakthrough addresses a long-standing challenge in spintronics research by providing a definitive measure of the spin Hall effect, overcoming ambiguities associated with traditional metrics.
This study provides valuable insights into the prevention of toxic gas diffusion during lithium battery fires, offering a potential solution for protecting firefighters’ respiratory health. The findings highlight the potential of flower-like CeO2 microspheres as an effective adsorbent for HF gas removal during LIB thermal runaway, which could significantly enhance the safety of lithium-ion batteries in various applications.
Plastics are one of the largest sources of pollution on Earth, lasting for years on land or in water. But a new type of brilliantly colored cellulose-based plastic detailed in ACS Nano could change that. By adding citric acid and squid ink to a cellulose-based polymer, researchers created a variety of structurally colored plastics that were comparable in strength to traditional plastics, but made from natural biodegradable ingredients and easily recycled using water.
A new study, published by a team of UBC Okanagan chemistry researchers, is creating a major rethink of how enzymes work. And how a quantum phenomenon helps an important enzyme control essential yet dangerous molecules.
Enzymes, also known as biocatalysts, are the tiny machines behind every process in living things, explains study co-author Hossein Khalilian, a doctoral student in the Irving K. Barber Faculty of Science’s Department of Chemistry. Enzymes make molecules that are crucial to life, while also breaking down molecules that are bad or unnecessary for us.