World's largest physics conference to be held in Denver and online this March
Meeting Announcement
Updates every hour. Last Updated: 22-Jan-2026 04:11 ET (22-Jan-2026 09:11 GMT/UTC)
Machine learning is revolutionizing fundamental science by tackling long-standing mathematical challenges. A key example is the classification of topological phases of matter. While topological invariants have been essential for characterizing these phases, no single invariant works universally. This limitation has led to many phases, once considered trivial, being reclassified as topological over the years. The recent discovery of non-Hermitian band topology has intensified efforts to classify these new phases, yet existing invariants still fail to capture all their unique features. Now, researchers from Tongji University, the Chinese university of Hong Kong and Nanyang Technological University have developed a machine-learning algorithm that performs unsupervised classification of symmetry-protected non-Hermitian topological phases—without relying on any predefined topological invariants. The method can autonomously construct a topological periodic table, bypassing the need for advanced mathematics. The learning process also yielded a formula revealing how parity transformation affects periodicity. Additionally, the algorithm accounts for boundary effects, allowing investigation of how open boundaries influence the topological phase diagram. These findings establish a powerful unsupervised framework for identifying non-Hermitian topological phases, uncover previously hidden topological traits, and offer valuable insights for future theoretical and experimental work.
Under tennis’s rules, the winner of a match is the player who wins the greater number of sets. In the majority of cases, that is also the player who wins the most games, too—but not always. Ahead of this year’s Australian Open, a team of game theorists has highlighted a rare but striking fairness problem: a player can win a match on sets while winning fewer games overall than their opponent.
According to a new meta-analysis, acute-on-chronic liver failure (ACLF) can develop even in patients with previously compensated liver disease and is associated with a high risk of death. Reviewing studies published over the past decade, researchers found that short-term mortality remains high, despite shifts in underlying causes, with alcohol-related liver disease increasingly replacing viral hepatitis. The findings underscore the need for stronger prevention efforts and improved clinical management.