Rethinking electric bus depots as ‘profitable energy hubs’
Peer-Reviewed Publication
Updates every hour. Last Updated: 29-Apr-2025 08:08 ET (29-Apr-2025 12:08 GMT/UTC)
Sodium-containing transition-metal layered oxides are promising electrode materials for sodium-ion batteries, a potential alternative to lithium-ion batteries. However, the vast number of possible elemental compositions for their electrodes makes identifying optimal compositions challenging. In a recent study, researchers from Japan leveraged extensive experimental data and machine learning to predict the optimal composition of sodium-ion batteries. Their approach could help reduce time and resources needed during exploratory research, speeding up the transition to renewable energy.
In this week’s Chaos, researchers used an electrophysiological computer model of the heart’s electrical circuits to examine the effect of the applied voltage field in multiple fibrillation-defibrillation scenarios. They discovered far less energy is needed than is currently used in state-of-the-art defibrillation techniques. The authors applied an adjoint optimization method and discovered adjusting the duration and the smooth variation in time of the voltage supplied by defibrillation devices is a more efficient mechanism that reduces the energy needed to stop fibrillation by three orders of magnitude.
Binghamton University, State University of New York will play a key role in a federal grant of up to $42.8 million to develop an implantable device that acts as a living pharmacy to treat inflammatory diseases. Mayo Clinic is the prime site for this groundbreaking research, and researchers at Binghamton will assist with bioengineering the transplanted cells.