Thermal-stable Ethylammonium doping enables customization of the emission properties of perovskite quantum dots
Peer-Reviewed Publication
Updates every hour. Last Updated: 13-Jan-2026 16:11 ET (13-Jan-2026 21:11 GMT/UTC)
All-inorganic CsPbI3 quantum dots (QDs) are regarded as promising candidates for advanced display materials due to their outstanding optoelectronic properties. However, conventional high-temperature thermal injection methods struggle with precise bandgap tuning, making it challenging to achieve pure red emission from CsPbI₃QDs. Now, in a study published in Science Bulletin, researchers from Zhejiang University of Technology have developed a thermally stable ethylammonium (EA+) doping strategy for CsPbI3 QDs, achieving Rec.2020-standard pure-red perovskite light-emitting diodes (PeLEDs) with a high external quantum efficiency exceed 26%. The key innovation lies in an in situ acid–base equilibrium reaction that generates thermally stable ethylammonium oleate. This allows for the successful synthesis of EA+-doped CsPbI3 QDs via high-temperature thermal injection, enabling precise emission tuning (630-650 nm) and exceptional spectral stability. The breakthrough opens new avenues for high-performance display technologies.
For the first time, Denmark is establishing production of microchip wafers at the leading standard. This makes Denmark a global player in chip production. The new “wafer factory,” which will be part of the University of Copenhagen, also gives a major advantage to Danish quantum researchers.
A study in National Science Review reports systematic observations of diazotroph abundance, community structure, and N2 fixation rates in the western North Pacific. Using generalized additive models, the team characterized ecological niches of key cyanobacterial diazotrophs and quantified UCYN-B’s contribution to global N2 fixation. The findings highlight UCYN-B’s pivotal role in marine N₂ fixation and provide new insights into ocean nitrogen cycle and productivity under climate change.
The University of Jyväskylä, Finland, has been involved as part of an international collaboration that has identified a way to completely suppress superconductivity in superconducting and ferromagnetic junctions. The results are key towards the development of non-volatile superconducting random access memories and could enable more energy-efficient information and communication technologies.
Dr. Dong-Soo Han's research team at the Korea Institute of Science and Technology (KIST) Semiconductor Technology Research Center, in collaboration with the research teams of Prof. Jung-Il Hong at DGIST and Prof. Kyung-Hwan Kim at Yonsei University, has developed a device principle that can utilize "spin loss," which was previously thought of as a simple loss, as a new power source for magnetic control.
Inverse lithography technology (ILT) is driving transformative innovations in semiconductor patterning processes. This paper reviews the evolution of ILT, providing an analysis of the applications in semiconductor manufacturing. In recent years, artificial intelligence (AI) has introduced breakthroughs for ILT, such as convolutional neural networks, generative adversarial networks, and model-driven deep learning, demonstrating potential in large-scale integrated circuit design and fabrication. This paper discusses future directions for ILT, which is expected to provide insights into semiconductor industry development.
A recent study developed a highly accurate risk prediction framework for preterm birth (PTB) that could broaden the potential of AI-driven multi-omics applications in precision obstetrics and biomedical research.
The model, deeply integrating genomics, transcriptomics, and large language models (LLMs) for the first time for PTB risk prediction, has shown its effectiveness and clinical application prospects.
The research was conducted by a collaborative team led by BGI Genomics, together with Professor Huang Hefeng's team, Shenzhen Longgang Maternal and Child Health Hospital, Fujian Maternity and Child Health Hospital, and OxTium Technology. The research was published in npj Digital Medicine on August 20th.