Identifying landslide threats using hydrological predictors
Peer-Reviewed Publication
Updates every hour. Last Updated: 17-Aug-2025 07:11 ET (17-Aug-2025 11:11 GMT/UTC)
Current methods to predict landslides rely primarily on rainfall intensity. Now, a new model combines various water-related factors with machine learning. When applied to more than 600 landslides in California, model identified the conditions that caused 89% of the events.
The global marine heatwaves (MHWs) of 2023 were unprecedented in their intensity, persistence, and scale, according to a new study. The findings provide insights into the region-specific drivers of these events, linking them to broader changes in the planet’s climate system. They may also portend an emerging climate tipping point. Marine heatwaves (MHWs) are intense and prolonged episodes of unusually warm ocean temperatures. These events pose severe threats to marine ecosystems, often resulting in widespread coral bleaching and mass mortality events. They also carry serious economic consequences by disrupting fisheries and aquaculture. It’s widely understood that human-driven climate change is driving a rapid increase in the frequency and intensity of MHWs. In 2023, regions across the globe, including the North Atlantic, Tropical Pacific, South Pacific, and North Pacific, experienced extreme MHWs. However, the causes underlying the onset, persistence, and intensification of widespread MHWs remain poorly understood.
To better understand the MHWs of 2023, Tianyun Dong and colleagues conducted a global analysis using combined satellite observations and ocean reanalysis data, including those from the ECCO2 (Estimating the Circulation and Climate of the Ocean-Phase II) high-resolution project. According to the findings, MHWs of 2023 set new records for intensity, duration, and geographic extent, lasting four times the historical average and covering 96% of the global ocean surface. Regionally, the most intense warming occurred in the North Atlantic, Tropical Eastern Pacific, North Pacific, and Southwest Pacific, collectively accounting for 90% of the oceanic heating anomalies. Dong et al. show that the North Atlantic MHW, which began as early as mid-2022, persisted for 525 days, while the Southwest Pacific event broke prior records with its vast spatial extent and prolonged duration. What’s more, in the Tropical Eastern Pacific, temperature anomalies peaked at 1.63 degrees Celsius during the onset of El Niño. Using a mixed-layer heat budget analysis, the authors discovered diverse regional drivers contributing to the formation and persistence of these events, including increased solar radiation due to reduced cloud cover, weakened winds, and ocean current anomalies. According to the authors, the 2023 MHWs may mark a fundamental shift in ocean–atmosphere dynamics, potentially serving as an early warning of an approaching tipping point in Earth’s climate system.
A novel deep learning–based framework that dramatically improves the accuracy of forecasts, even when data are limited. The task involved using past atmospheric variables to predict five key surface weather indicators—including temperature, wind, and precipitation—every 6 hours for the next 5 days.
As the climate becomes warmer on average, it makes intuitive sense that we will see more hot days and we've had predictions of this for some time. However, the duration of heatwaves — how many days in a row exceed a temperature that is unusually hot for a given region — can be very important for impacts on humans, livestock and ecosystems. Predicting how these durations will change under a long-term warming trend is more challenging because day-to-day temperatures are correlated — tomorrow's temperatures have a dependence on today's temperature. This study takes this effect into account, along with the warming seen in current and historical observations and projected for the future by climate models for a wide range of land regions. Not only do the heatwave durations increase, but each additional increment of warming causes a larger increase in the typical length of long heat waves. In other words, if the next decade brings as much large-scale warming as a previous decade, the additional increase in heatwave durations would be even larger than we've experienced so far.
Low carbon fuel policies are intended to reduce greenhouse gas (GHG) emissions from transportation. However, rigid carbon intensity (CI) accounting procedures in current policies may limit CI responsiveness across candidate sites and facilities. This study examines how low carbon fuel programs capture or overlook spatial variability and net electricity production in biofuel carbon intensity, influencing crediting outcomes and fuel selling prices.