A new route to synthesize multiple functionalized carbon nanohoops
Peer-Reviewed Publication
Updates every hour. Last Updated: 28-Jan-2026 06:11 ET (28-Jan-2026 11:11 GMT/UTC)
Carbon nanohoops, or [n]cycloparaphenylenes ([n]CPPs), are ring-shaped molecules with exceptional optical properties but are difficult to synthesize and functionalize. Researchers in Japan have now used a gold-mediated synthetic strategy to construct a hexabrominated [9]CPP derivative, providing a versatile and scalable platform for post-functionalization. Using this scaffold, they created π-extended chiral nanohoops that exhibit extremely high glum value in their circularly polarized luminescence, opening new pathways for advanced optoelectronic materials and precisely designed nanocarbon architectures.
Scientists have introduced the first absolute, contactless thermometry technique based on Brillouin scattering in gases, enabling high-accuracy temperature measurements from room temperature down to deep cryogenic levels. By filling hollow-core fibres with gases such as neon, argon, or helium, the method retrieves temperature directly from the Brillouin frequency shift via the interaction between laser light and acoustic waves, eliminating the need for calibration. The results pave the way for ultra-precise, minimally invasive thermometry in extreme environments.