Nanophysics: molecules as switches for sustainable light-driven technologies
Peer-Reviewed Publication
Updates every hour. Last Updated: 16-Dec-2025 06:11 ET (16-Dec-2025 11:11 GMT/UTC)
A team of LMU nanophysicists identifies new mechanisms of plasmonic damping
Doenjang, a traditional Korean fermented soybean paste, contains natural umami and kokumi-active compounds. A new study from Jeonbuk National University found that monosodium glutamate (MSG) and nucleotide-based seasonings affect doenjang soup differently. Nucleotides mainly boost umami, while MSG strongly enhances both umami and kokumi, resulting in higher consumer acceptance.
In a new Nature Physics study, researchers created particle-like so-called “vortex knots” inside chiral nematic liquid crystals, a twisted fluid similar to those used in LCD screens. For the first time, these knots are stable and could be reversibly switched between different knotted forms, using electric pulses to fuse and split them.
EurekAlert Summary
Order from Chaos: Technion and SJTU Researchers Reveal Hidden Photon Behavior
A collaborative team from the Technion–Israel Institute of Technology and Shanghai Jiao Tong University has identified a previously unknown physical phenomenon showing how order can emerge from complete disorder. Reported in Nature Materials, the study describes the discovery of photon “spin locking” generated by Brownian motion in nanometric systems.
The research was led by Prof. Erez Hasman of the Technion’s Faculty of Mechanical Engineering and the Helen Diller Quantum Center, together with Prof. Bo Wang, head of the Spin Nanophotonics Group at SJTU’s School of Physics and Astronomy and a former postdoctoral researcher in Prof. Hasman’s group.
The team uncovered a “spin-locking effect induced by Brownian motion,” demonstrating that photons scattered from randomly moving nanoparticles unexpectedly align into a specific spin state. This result overturns the long-standing assumption that Brownian motion produces fully chaotic, unpolarized scattering.
By illuminating nanoparticles suspended in a liquid, the researchers showed that sideways-scattered photons exhibit a locked spin state—an emergent form of order arising precisely from the particles’ random motion. The effect also enables characterization of particle size and material type, offering a new tool for nanoparticle identification.
“Our discovery beautifully illustrates the importance of experimental physics,” said Prof. Hasman. “It is often the most disordered systems that reveal the deepest order. We believe this phenomenon will open new avenues in nanoparticle characterization and future optical technologies.”
The study was supported by the National Science Foundations of Israel and China.
Osaka Metropolitan University researchers enhanced Saccharomyces cerevisiae to increase its tolerance for high 2,3-butanediol concentrations. This was achieved by introducing mutations into the genomic DNA and successfully obtaining a mutant strain that proliferates 122 times more than the parent strain.