North Pacific waters are acidifying more rapidly below the surface
Peer-Reviewed Publication
Updates every hour. Last Updated: 28-Dec-2025 02:11 ET (28-Dec-2025 07:11 GMT/UTC)
A new study, led by University of Hawai‘i at Mānoa oceanographers, revealed that the ocean is acidifying even more rapidly below the surface in the open waters of the North Pacific near Hawai‘i.
More trees will cool the climate and suppress fires, but mainly if planted in the tropics, according to a new UC Riverside study.
Researchers have developed a self-powered microneedle patch to monitor a range of health biomarkers without drawing blood or relying on batteries or external devices. In proof-of-concept testing with synthetic skin, the researchers demonstrated that the patches could collect biomarker samples over periods ranging from 15 minutes to 24 hours.
Inspired by the serrated stinger of a honeybee, a new microneedle platform was developed in International Journal of Extreme Manufacturing (IF: 21.3) to combine drug delivery, electrical stimulation, and continuous monitoring in a single, wearable system. This platform tackles one of the toughest problems in modern medicine: diabetic wound healing.
Nanoporous metal oxides have a wide variety of applications, such as catalysts, electrodes, energy materials, sensors, and biomaterials. Recently, a team of researchers has demonstrated a novel synthesis method for their efficient and desirable preparation. Specifically, they prepared difficult-to-prepare quasi-single-crystalline inverse opal α-Fe2O3, demonstrating that crystal growth occurs in nanospace due to volatilization and oxidation of metal chlorides. This technology is expected to further the development of catalytic and energy conversion materials for carbon neutrality.
Light and ultrasonic mechanical waves in optical fibers are coupled together and affect each other. This phenomenon is important for unique sensors, laser sources, and signal processing. Researchers in Israel examined the generation of ultrasound in an advanced type of fiber, supporting several optical modes. The fiber enables the excitation of wider range of ultrasonic waves, reaching higher frequencies and new forms of symmetry. The results can lead to better laser sources and fiber sensors.