Breakthrough in 2.5D MOF materials based on triptycene derivatives
Peer-Reviewed Publication
Updates every hour. Last Updated: 23-Dec-2025 16:11 ET (23-Dec-2025 21:11 GMT/UTC)
Researchers at Kumamoto University and Nagoya University have developed a new class of two-dimensional (2D) metal-organic frameworks (MOFs) using triptycene-based molecules, marking a breakthrough in the quest to understand and enhance the physical properties of these promising materials. This innovation opens new possibilities for multifunctional applications in gas/molecular sensors, electrochemical energy storage, and spintronic devices.
POSTECH–SNU cut process temperature to 300°C, halving costs and advancing renewable energy storage.
A research team has revealed how gritty stone cells form and expand in pear fruit flesh by using a cutting-edge imaging technique based on bioorthogonal click chemistry.
Conductive hydrogels have garnered widespread attention as a versatile class of flexible electronics. Despite considerable advancements, current methodologies struggle to reconcile the fundamental trade-off between high conductivity and effective absorption-dominated electromagnetic interference (EMI) shielding, as dictated by classical impedance matching theory. This study addresses these limitations by introducing a novel synthesis of aramid nanofiber/MXene-reinforced polyelectrolyte hydrogels. Leveraging the unique properties of polyelectrolytes, this innovative approach enhances ionic conductivity and exploits the hydration effect of hydrophilic polar groups to induce the formation of intermediate water. This critical innovation facilitates polarization relaxation and rearrangement in response to electromagnetic fields, thereby significantly enhancing the EMI shielding effectiveness of hydrogels. The electromagnetic wave attenuation capacity of these hydrogels was thoroughly evaluated across both X-band and terahertz band frequencies, with further investigation into the impact of varying water content states—hydrated, dried, and frozen—on their electromagnetic properties. Moreover, the hydrogels exhibited promising capabilities beyond mere EMI shielding; they also served effectively as strain sensors for monitoring human motions, indicating their potential applicability in wearable electronics. This work provides a new approach to designing multifunctional hydrogels, advancing the integration of flexible, multifunctional materials in modern electronics, with potential applications in both EMI shielding and wearable technology.