US faces rising death toll from wildfire smoke, study finds
Peer-Reviewed Publication
Updates every hour. Last Updated: 27-Oct-2025 01:11 ET (27-Oct-2025 05:11 GMT/UTC)
716-645-4614
Tiny solid particles – like pollutants, cloud droplets and medicine powders – form highly concentrated clusters in turbulent environments like smokestacks, clouds and pharmaceutical mixers. What causes these extreme clusters – which make it more difficult to predict everything from the spread of wildfire smoke to finding the right combination of ingredients for more effective drugs – has puzzled scientists. A new University at Buffalo study, published Sept. 19 in Proceedings of the National Academy of Sciences, suggests the answer lies within the electric forces between particles.
The experiment, which will take place on 19 September, demonstrates the potential of high-performance computing infrastructures for emergency calculations, warning systems and urgent responses to extreme natural events.
Thanks to the exceptional allocation of supercomputing resources, unprecedented seismic simulation maps will be generated covering half of Mexico, one of the most seismically active areas on the planet.