AMS 2026 Meeting showcases atmospheric science and the “human factor”
Meeting Announcement
Updates every hour. Last Updated: 6-Dec-2025 07:11 ET (6-Dec-2025 12:11 GMT/UTC)
Strategically coupling nanoparticle hybrids and internal thermosensitive molecular switches establishes an innovative paradigm for constructing micro/nanoscale-reconfigurable robots, facilitating energy-efficient CO2 management in life-support systems of confined space. Here, a micro/nano-reconfigurable robot is constructed from the CO2 molecular hunters, temperature-sensitive molecular switch, solar photothermal conversion, and magnetically-driven function engines. The molecular hunters within the molecular extension state can capture 6.19 mmol g−1 of CO2 to form carbamic acid and ammonium bicarbonate. Interestingly, the molecular switch of the robot activates a molecular curling state that facilitates CO2 release through nano-reconfiguration, which is mediated by the temperature-sensitive curling of Pluronic F127 molecular chains during the photothermal desorption. Nano-reconfiguration of robot alters the amino microenvironment, including increasing surface electrostatic potential of the amino group and decreasing overall lowest unoccupied molecular orbital energy level. This weakened the nucleophilic attack ability of the amino group toward the adsorption product derivatives, thereby inhibiting the side reactions that generate hard-to-decompose urea structures, achieving the lowest regeneration temperature of 55 °C reported to date. The engine of the robot possesses non-contact magnetically-driven micro-reconfiguration capability to achieve efficient photothermal regeneration while avoiding local overheating. Notably, the robot successfully prolonged the survival time of mice in the sealed container by up to 54.61%, effectively addressing the issue of carbon suffocation in confined spaces. This work significantly enhances life-support systems for deep-space exploration, while stimulating innovations in sustainable carbon management technologies for terrestrial extreme environments.
Dr Shiva Khoshtinat is a postdoctoral researcher at the Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta' at Politecnico di Milano. With an interdisciplinary background spanning civil engineering, architecture, materials science, and biology, she explores how nature’s strategies can inspire sustainable construction on Earth and beyond. Her research focuses on biomineralization and microbial co-cultures as self-sustaining systems for construction. In a recent publication in Frontiers in Microbiology, Khoshtinat and co-authors present a bold approach for construction on Mars, harnessing microbial partnerships to transform Martian regolith into structural materials, laying the scientific foundations for building the first habitats on the Red Planet.