UAF professor’s work is a step toward elusive ‘theory of everything’
Peer-Reviewed Publication
Updates every hour. Last Updated: 26-Jun-2025 16:10 ET (26-Jun-2025 20:10 GMT/UTC)
Time, not space plus time, might be the single fundamental property in which all physical phenomena occur, according to a new theory by a University of Alaska Fairbanks scientist.
The theory also argues that time comes in three dimensions rather than just the single one we experience as continual forward progression. Space emerges as a secondary manifestation.
Serendipitous discovery of djerfisherite in Ryugu grain challenges current paradigm of the nature of primitive asteroids.
Astronomers have discovered a huge filament of hot gas bridging four galaxy clusters. At 10 times as massive as our galaxy, the thread could contain some of the universe’s ‘missing’ matter, addressing a decades-long mystery.
Excitons--bound pairs of electrons and holes created by light--are key to the optoelectronic behavior of carbon nanotubes (CNTs). However, because excitons are confined to extremely small regions and exist for only fleeting moments, it has been extremely challenging to directly observe their behavior using conventional measurement techniques.
In this study, we overcame that challenge by using an ultrafast infrared near-field optical microscope that focuses femtosecond infrared laser pulses down to the nanoscale. This advanced approach allowed us to visualize where excitons are generated and decay inside CNTs in real space and real time.
Our observations revealed that nanoscale variations in the local environment--such as subtle lattice distortions within individual CNTs or interactions with neighboring CNTs--can significantly affect exciton generation and relaxation dynamics.
These insights into local exciton dynamics pave the way for precise control of light-matter interactions at the nanoscale, offering new opportunities for the development of advanced optoelectronic devices and quantum technologies based on carbon nanotube platforms.
A research team at Beihang University, led by Professor Jianghao Wu, has achieved a significant breakthrough in the design of propulsion systems for future low-altitude transport, particularly electric Vertical Take-Off and Landing (eVTOL) aircraft. Their pioneering work, recently published in the Chinese Journal of Aeronautics, introduces a novel analytical framework for ducted propellers, promising to make these advanced flying vehicles smaller, lighter, and more powerful. This research offers vital support for the burgeoning field of advanced air mobility, aiming to alleviate urban traffic congestion and utilize low-altitude airspace.