Organic molecules of unprecedented size discovered on Mars
Peer-Reviewed Publication
Updates every hour. Last Updated: 30-Jun-2025 06:10 ET (30-Jun-2025 10:10 GMT/UTC)
The longest organic molecules identified to date on Mars have recently been detected by scientists from the CNRS1, together with their colleagues from France, the United States of America, Mexico and Spain. These long carbon chains, containing up to 12 consecutive carbon atoms, could exhibit features similar to the fatty acids produced on Earth by biological activity2. The lack of geological activity and the cold, arid climate on Mars have helped preserve this invaluable organic matter in a clay-rich sample for the past 3.7 billion years. It therefore dates from the period during which life first emerged on Earth. These findings are due to be published on March 24th 2025 in the journal PNAS.
Green spaces play an important role for urban populations, whether by protecting against extreme weather events or providing space for recreation. In two studies, researchers at the Karlsruhe Institute of Technology (KIT) show just how much a diverse tree population affects microclimate, rainwater seepage and human well-being. Their results have been published in the journals Sustainable Cities and Society and Scientific Reports.
Researchers at TU Delft (The Netherlands) and Brown University have developed scalable nanotechnology-based lightsails that could support future advances in space exploration and experimental physics. Their research, published in Nature Communications, introduces new materials and production methods to create the thinnest large-scale reflectors ever made. ‘This is not just another step in making things smaller; it’s an entirely new way of thinking about nanotechnology,’ explains Dr. Richard Norte, associate professor at TU Delft. ‘We’re creating high-aspect-ratio devices that are thinner than anything previously engineered but span dimensions akin to massive structures.’
Understanding photogenerated carrier transport in 2D perovskites, especially surface states, is challenging with conventional time-resolved techniques. Scientists at KAUST utilized scanning ultrafast electron microscopy (SUEM) with groundbreaking surface sensitivity to disclose carrier diffusion rates of ~30 cm²/s for n=1, 180 cm²/s for n=2, and 470 cm²/s for n=3, which are notably higher than bulk. This highlights the SUEM’s potential for advancing the understanding of carrier dynamics. Density Functional Theory (DFT) confirms broader carrier transmission channels at the surface, offering key insights for optimizing 2D perovskite optoelectronic devices.