FAU researchers inducted into Academy of Science, Engineering and Medicine of Florida
Business Announcement
Updates every hour. Last Updated: 1-Jan-2026 02:11 ET (1-Jan-2026 07:11 GMT/UTC)
Terahertz (THz) communication has emerged as one of the key technologies for sixth-generation (6G) wireless networks. Nevertheless, the transition to higher operational frequencies poses various challenges including high-speed digital-to-analog conversion (DACs) and analog-to-digital conversion (ADCs), heterogeneous integration of optoelectronic devices, resulting in an urgent need for solutions. In this paper, we demonstrate a groundbreaking THz analog differential operator driven by diffractive neural networks (DNN), implementing ultra-fast and high-throughput analog domain differential operations. The designed multilayer all-optical DNN composed of compact dielectric metasurfaces is trained with trigonometric functions to perform analog differential computing of complex input signals by approximating the differentiation of finite decompositions of time-domain function based on the Fourier transform theory, significantly improving integration, throughput, and processing speed. Our design has been experimentally validated to successfully implement single-direction differential operation on one- and two-dimensional signals with superior structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR), providing a promising path for the development of integrated and ultrafast THz communication systems.
As a data-driven analysis and decision-making tool, student portraits have gained significant attention in education management and personalized instruction. This research systematically explores the construction process of student portraits by integrating knowledge graph technology with advanced data analytics, including clustering, predictive modelling, and natural language processing. It then examines the portraits’ applications in personalized learning, such as student-centric adaptation of content and paths, and personalized teaching, especially the educator-driven instructional adjustments. Through case studies and quantitative analysis of multimodal datasets, including structured academic records, unstructured behavioural logs, and socio-emotional assessments, the research demonstrates how student portraits enable academic early warnings, adaptive learning path design, and equitable resource allocation. The findings provide actionable insights and technical frameworks for implementing precision education.
The rapid development of artificial intelligence technology has propelled the automated, humanized, and personalized learning services to become a core topic in the transformation of education. Generative artificial intelligence (GenAI), represented by large language models (LLMs), has provided opportunities for reshaping the methods for setting personalized learning objectives, learning patterns, construction of learning resources, and evaluation systems. However, it still faces significant limitations in understanding the differences in individual static characteristics, dynamic learning processes, and students’ literacy goals, as well as in actively differentiating and adapting to these differences. The study has clarified the technical strategies and application services of GenAI-empowered personalized learning, and analyzed the challenges in areas such as the lag in theoretical foundations and lack of practical guidance, weak autonomy and controllability of key technologies, insufficient understanding of the learning process, lack of mechanisms for enhancing higher-order literacy, and deficiencies in safety and ethical regulations. It has proposed implementation paths around interdisciplinary theoretical innovation, development of LLMs, enhancement of personalized basic services, improvement of higher-order literacy, optimization of long-term evidence-based effects, and establishment of a safety and ethical value regulation system, aiming to promote the realization of safe, efficient, and sustainable personalized learning.
Generative artificial intelligence (GenAI) models, such as ChatGPT, have rapidly gained popularity. Despite this widespread usage, there is still a limited understanding of how this emerging technology impacts different stakeholders in higher education. While extensive research exists on the general opportunities and risks in education, there is often a lack of specificity regarding the target audience—namely, students, educators, and institutions—and concrete solution strategies and recommendations are typically absent. Our goal is to address the perspectives of students and educators separately and offer tailored solutions for each of these two stakeholder groups. This study employs a mixed-method approach that integrates a detailed online questionnaire of 188 students with a scenario analysis to examine potential benefits and drawbacks introduced by GenAI. The findings indicate that students utilize the technology for tasks such as assignment writing and exam preparation, seeing it as an effective tool for achieving academic goals. Subsequent the scenario analysis provided insights into possible future scenarios, highlighting both opportunities and challenges of integrating GenAI within higher education for students as well as educators. The primary aim is to offer a clear and precise understanding of the potential implications for students and educators separately while providing recommendations and solution strategies. The results suggest that irresponsible and excessive use of the technology could pose significant challenges. Therefore, educators need to establish clear policies, reevaluate learning objectives, enhance AI skills, update curricula, and reconsider examination methods.