Cancer treatments and Panama Canal efficiency: Purdue Innovates Incubator funds projects to advance university innovations
Grant and Award Announcement
Updates every hour. Last Updated: 12-Aug-2025 10:11 ET (12-Aug-2025 14:11 GMT/UTC)
RNAi technologies have been exploited to control viruses, pests, oomycetes and fungal phytopathogens that cause disasters in host plants, including many agronomically significant crops. However, it is unclear what process mediates RNA uptake by fungi. Here, the authors utilized live-cell imaging technology combined with molecular biology experiments to demonstrate that exogenous RNA is indiscriminately absorbed by Verticillium dahliae, the notorious plant pathogenic fungus. The uptake of exogenous RNA by fungal cells is predominantly mediated through endocytosis. This study not only provides a new theoretical foundation for applying trans-kingdom RNA interference technology in crop protection but also lays the groundwork for research and applications of exogenous RNA in plant-fungi interaction systems.
In the ever-evolving landscape of geospatial technology, innovations are steadily advancing our capabilities in Earth monitoring and urban planning. Precise positioning technologies and geoinformation science have become essential for various applications, from scientific research on global climate change and earthquake monitoring to supporting major initiatives in satellite navigation and smart city development. This article explores recent advancements in the field, including improvements in Terrestrial Reference Frame accuracy, real-time seismic monitoring through Global Navigation Satellite Systems (GNSSs), the development of advanced hyperspectral imaging systems, new techniques for ionospheric irregularity detection, and the creation of three-dimensional (3D) building space datasets for urban planning. These developments, while incremental, collectively enhance our ability to understand and manage our planet's resources and urban environments with greater precision and insight.
In new research, Ramkumar Ranganathan, associate professor of management at Texas McCombs, explores how tech companies can shape emerging standards to their advantage. They do it, he finds, by simultaneously cooperating and competing with other companies on the committees that collectively set standards.
“Each firm is trying to look out for itself, but at the same time, trying to coordinate and shape the rules,” Ranganathan says.
A pioneering research lab at the University of Illinois Urbana-Champaign has achieved another milestone using light-driven enzymatic reactions to convert simple biological building blocks into valuable chemicals. The team, part of the Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), developed a clean, efficient way to make complex chemicals called chiral ketones through photocatalysis. Chiral molecules — commonly used in agrochemicals and medicines — exist in two mirror-image forms, like left and right hands, and often only one “hand” is effective or safe. This study offers a precise and eco-friendly way to make specific chiral molecules with complicated structures, supporting new opportunities to transform renewable carbon sources like bioenergy crops into high-value molecules.