How plastics grip metals at the atomic scale
Peer-Reviewed Publication
Updates every hour. Last Updated: 17-Jan-2026 08:11 ET (17-Jan-2026 13:11 GMT/UTC)
Scientists used molecular simulations to reveal how polymer chains adhere to alumina surfaces. Adhesion depends on both polymer chemistry and surface termination, with different responses before and after yielding. These insights clarify metal–plastic bonding mechanisms and offer guidelines for designing stronger, lighter, and more sustainable hybrid materials for use in transportation.
Intense sand mining is putting the largest freshwater lake in Southeast Asia at risk of collapse with catastrophic consequences, a new study has found.
Summers on the islands in Okinawa Prefecture are hot and humid. Today, we have AC systems – so how did Okinawans throughout history manage to stay cool and comfortable? One answer lies in the local design tradition. Houses are low and open plan behind thick coral or limestone walls, capturing a fresh breeze while staying protected from typhoon gales, and Okinawans have traditionally been dressed in Bashofu textiles. Bashofu kimonos stay both dry and cool while being remarkably soft, despite being woven from banana fibers which are notorious for their stiffness.
Recently, scientists have turned to Bashofu to learn what makes these sustainably produced textiles so well-adapted for comfort in the subtropics. In a paper now published in Scientific Reports, researchers from the Okinawa Institute of Science and Technology (OIST) have produced a comprehensive overview of how exactly the Bashofu materials and techniques alter the structural properties of the banana plant fibers to achieve the desired soft, durable, and breathable fabric.
X-ray absorption spectroscopy (XAS) provides valuable information about a material’s properties and electronic states. However, it requires extensive expertise and manual effort for conventional analysis. Now, researchers from Japan have developed a novel artificial intelligence-based approach for analyzing XAS data that can enable rapid, autonomous, and object material identification. This novel approach outperforms the previous studies in terms of higher accuracy, accelerating the development of new materials.