How to get rid of carbon dioxide for good
Peer-Reviewed Publication
Updates every hour. Last Updated: 21-Aug-2025 02:11 ET (21-Aug-2025 06:11 GMT/UTC)
Sorghum is one of the world’s oldest grains and possesses many traits that can benefit food security, climate resilience, and biodiversity. However, the mechanisms behind these traits have long remained a mystery to researchers, which has hindered efficient cultivation. Now, a new technique and a biobank - developed in collaboration with the University of Copenhagen - have made research and breeding possible at an unprecedented pace, paving the way to an effective crop in both the Global North and South.
A recent study has used advanced techniques to uncover the role of ultraviolet (UV) light in activating peracetic acid (PAA) to generate powerful radicals, essential for water treatment. By combining in-situ electron paramagnetic resonance (EPR) with density functional theory (DFT) calculation, the researchers identified and analyzed the types and concentrations of radicals produced under different UV wavelengths (185, 254, and 365 nm). The results show that UV light at different wavelengths influences the type and concentration of formed radicals. The study provides new insights into how PAA-based advanced oxidation processes (AOPs) work based on the key radicals identification, offering a solid foundation for optimizing UV-based water purification technologies and potentially expanding their application in environmental remediation areas.
Researchers analyzed trade-related risks to energy security across 1,092 scenarios for cutting carbon emissions by 2060. They found that swapping out dependence on imported fossil fuels for increased dependence on critical minerals for clean energy would improve security for most nations – including the U.S., if it cultivates new trade partners.
Researchers have reviewed metamaterials to emulate Schrödinger dynamics, bridging classical wave physics and quantum phenomena. Such analog enables robust wave manipulation and explores quantum behaviors beyond electronic systems, promising breakthroughs in imaging, sensing, and energy technologies.
In a paper published in Science Bulletin, an international team of physicists from Singapore and China demonstrates how quasi-bound states in the continuum (QBICs) can induce abrupt lateral beam shifts in the terahertz regime. By applying Brillouin zone folding to a compound grating waveguide, the researchers created a QBIC band that enables sudden and significant beam shifts, offering new insights into real-space QBIC properties and potential applications in sensing and wavelength multiplexing.
The formation of a strong coordination structure, [Zn(H2O)6]2+ often increases direct contact between the solvated H2O and Zn anodes on the inner Helmholtz layer, which exacerbates undesirable side reactions and dendrite growth, hindering the practical application of aqueous Zn metal batteries. Researchers identify that the solvated H2O can be effectively minimized by an artificial solid electrolyte interphase (SEI) consisting of highly nitrogen-doped amorphous carbon (NC) and perfluorosulfonic acid polymer (Nafion). Theoretical and experimental analyses reveal that NC raises the Fermi level of the composite SEI and activates the non-coordinating charge transfer from the SEI to [Zn(H2O)6]2+, which leads to ultrafast desolvation of hydrated Zn-ions in the outer Helmholtz layer; while the Nafion framework ensures selective transport channels for Zn ions. Remarkably, the derived NC-Nafion@Zn symmetric cell exhibits a long lifespan (3400 h, 1 mA cm-2; 2000 h, 5 mA cm-2); moreover, the NC-Nafion@Zn//Mn4O3-carbon nanotubes full battery delivers ultralong cycling stability of 9300 cycles at 2 A g-1 with a high retention of 91.3%.