20 million for courageous research at ISTA
Business Announcement
Updates every hour. Last Updated: 12-Nov-2025 12:11 ET (12-Nov-2025 17:11 GMT/UTC)
Ship traffic in shallow areas, such as ports, can trigger large methane emissions by just moving through the water. The researchers in a study, led by Chalmers University of Technology in Sweden, observed twenty times higher methane emissions in the shipping lane compared to nearby undisturbed areas. Despite the fact that methane is a greenhouse gas that is 27 times as powerful as carbon dioxide, these emissions are often overlooked with today's measurement methods.
"Our measurements show that ship passages trigger clear pulses of high methane fluxes from the water to the atmosphere. This is caused by pressure changes and mixing of the water mass. Even if the pulses are short, the total amount during a day is significant," says Amanda Nylund, researcher at Chalmers University of Technology and the Swedish Meteorological and Hydrological Institute, SMHI.
The ability to analyze gene expression at the single-cell level — known as single-cell RNA sequencing (scRNA-seq) — has transformed life sciences, driving discoveries across immunology, oncology, and developmental biology. Over 40,000 studies have leveraged this technique to map the complex diversity of cells within tissues and organisms.
Yet beneath this explosive growth lies a persistent problem: clustering instability. When researchers attempt to group cells by expression patterns to identify cell types or disease states, they often face inconsistent results — even when analyzing the same dataset repeatedly.
Inaccurate clustering can lead to misclassifying normal cells as cancerous or missing rare but critical cell types — jeopardizing interpretation and therapeutic decisions. This “reliability crisis” forces scientists to rerun analyses or rely on computationally expensive pipelines to extract trustworthy insights.
Now, a research team led by Professor KIM Jae Kyoung of the Korea Advanced Institute of Science and Technology (KAIST) and the Institute for Basic Science (IBS) has developed a solution: a mathematical framework named scICE (single-cell Inconsistency Clustering Estimator).