AI replaces humans in identifying causes of fuel cell malfunctions
Peer-Reviewed Publication
Updates every hour. Last Updated: 26-Jun-2025 22:10 ET (27-Jun-2025 02:10 GMT/UTC)
Researchers have opened a transformative chapter in agricultural biotechnology by unveiling virus-induced genome editing (VIGE) techniques for Solanaceous crops, a group that includes tomatoes, potatoes, and eggplants.
A new study by Tel Aviv University reveals how bacterial defense mechanisms can be neutralized, enabling the efficient transfer of genetic material between bacteria. The researchers believe this discovery could pave the way for developing tools to address the antibiotic resistance crisis and promote more effective genetic manipulation methods for medical, industrial, and environmental purposes.
Recently, a research team led by Prof. LI Chuanfeng from the University of Science and Technology of China (USTC) achieved a breakthrough in quantum photonics. They developed an on-chip photonic simulator capable of simulating arbitrary-range coupled frequency lattices with gauge potential. This study was published in Physical Review Letters.
A research team led by Prof. CHEN Yan at the University of Science and Technology of China (USTC) took a leap forward in cardiovascular health monitoring. They developed a non-invasive radio frequency (RF) based system capable of monitoring heart rate variability (HRV) with clinical-grade accuracy over extended periods. This research has been published in Nature Communications.
A research team led by Prof.GUO Guangcan from the University of Science and Technology of China (USTC),collaborated with Prof.Jiannis K.Pachos from University of Leeds,has experimentally calculated the Jones polynomial based on the quantum simulation of braided Majorana zero modes.The research team determined the Jones polynomials of different links through simulate the braiding operations of Majorana fermions.This study was published in Physical Review Letters.
A research team led by Prof. SHEN Yan'an from the University of Science and Technology of China (USTC) has made significant progress in studying the sources and formation mechanisms of haze. Through coal combustion experiments and high-precision sulfur isotope analysis, the researchers drew the conclusion that particulate matter from coal combustion is one of the main sources of haze in North China. The findings were published online in Proceedings of the National Academy of Sciences (PNAS) on December 10.