Targeted cell removal offers treatment hope
Peer-Reviewed Publication
Updates every hour. Last Updated: 9-Sep-2025 18:11 ET (9-Sep-2025 22:11 GMT/UTC)
A team of scientists at Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) has created a protein-based therapeutic tool that could change the way we treat diseases caused by harmful or unnecessary cells. The new tool, published in Nature Biomedical Engineering, involves a synthetic protein called Crunch, short for Connector for Removal of Unwanted Cell Habitat. Crunch uses the body’s natural waste removal system to clear out specific target cells, offering hope for improved treatments for cancer, autoimmune diseases, and other diseases where harmful cells cause damage.
A comprehensive review published in iMeta synthesizes current evidence on how the microbiome (including bacteria, viruses, and fungi) shapes cancer biology. The study highlights microbial influences on tumor development, immune modulation, therapy response, and potential diagnostic and therapeutic applications, underscoring the microbiome’s promise as a target for next-generation oncology strategies.
Researchers at the Antimicrobial Resistance (AMR) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), Massachusetts Institute of Technology’s (MIT) research enterprise in Singapore, have developed a powerful tool capable of scanning thousands of biological samples to detect transfer ribonucleic acid (tRNA) modifications — tiny chemical changes to RNA molecules that help control how cells grow, adapt to stress and respond to diseases such as cancer and antibiotic‑resistant infections.
This news article reports on a study revealing the importance of the proboscis monkey's large nose in vocal communication. Researchers used CT scans and computer simulations to demonstrate that the nose's shape modifies the resonant frequencies of calls, creating unique vocal signatures for individual monkeys. This discovery highlights the role of the nose in enhancing vocal identity and provides insights into the evolution of communication, not just in proboscis monkeys but potentially in other species as well. The collaboration between scientists and the Yokohama Zoo Zoorasia opens exciting new avenues for understanding the link between physical traits and social behaviors in the animal kingdom.
Clinicians’ ability to diagnose and treat chronic diseases is limited by scientific uncertainty around factors contributing to disease risk. A study published September 2nd in the open-access journal PLOS Biology by Drs. Emily Van Syoc, Emily Davenport, and Seth Bordenstein at The Pennsylvania State University, United States, uncovers evidence of the first ternary relationships between human genetic variation, variation in gut mycobiome, and risk of developing chronic disease.