Directed co-catalyst deposition on organic semiconductor heterojunctions: A new strategy for efficient photocatalytic hydrogen production
Peer-Reviewed Publication
Updates every hour. Last Updated: 23-Oct-2025 05:11 ET (23-Oct-2025 09:11 GMT/UTC)
Engineering students developed an AI-powered irrigation solution rooted in intelligence, earning them first place in the “Building a Better Future Through Business and AI” competition.
A pioneering two-year field study has revealed that biodegradable microplastics, often hailed as eco-friendly alternatives to conventional plastics, are quietly reshaping the chemistry of farmland soils in unexpected and complex ways. Published on August 22, 2025, in Carbon Research as an open-access original article, this research was co-led by Dr. Jie Zhou from the College of Agriculture at Nanjing Agricultural University, China, and Dr. Davey L. Jones from the School of Environmental and Natural Sciences at Bangor University, UK—a powerful Sino-British collaboration bridging soil science, microbiology, and climate resilience. The team investigated how polypropylene (PP)—a common conventional plastic—and polylactic acid (PLA)—a widely used biodegradable plastic—affect soil organic carbon (SOC) in real-world agricultural conditions. Both were added at realistic concentrations (0.2% w/w) to topsoil (0–20 cm), with an unamended plot serving as control. While neither plastic changed the total amount of carbon stored, the story beneath the surface was dramatically different.